

Review

Contents lists available at ScienceDirect

Journal of Fluorine Chemistry

journal homepage: www.elsevier.com/locate/fluor

Polyvalent perfluoroorgano- and selected polyfluoroorgano-halogen(III and V) compounds

Hermann-Josef Frohn^{a,*}, Markus E. Hirschberg^a, André Wenda^a, Vadim V. Bardin^b

^a Inorganic Chemistry, University of Duisburg-Essen, Lotharstr. 1, D-47048 Duisburg, Germany ^b N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, SB RAS, Acad. Lavrentjev Ave. 9, 630090 Novosibirsk, Russia

ARTICLE INFO

Article history: Received 29 January 2008 Received in revised form 9 April 2008 Accepted 14 April 2008 Available online 22 April 2008

Keywords: Polyvalent iodine compounds Polyvalent bromine compounds Perfluoroalkyl Perfluoroalkynyl Perfluoroalkynyl Onium cations NMR Structure

Contents

ABSTRACT

This review compiles important aspects of the chemistry of polyvalent perfluoroorganohalogen(III and V) compounds of the last three decades and reports on distinctions which are worth mentioning in comparison with non-fluorinated polyvalent organohalogen(III and V) analogues. Besides general synthetic paths to neutral (R_FHalX_2 , (R_F)₂IX, (R_F)₃I, and R_FHalX_4), cationic ([$R_F(R')Hal$]Y and [$R_F(R')HalF_2$]Y), and anionic ($M[R_FHalX_3]$ and $M[(R_F)_2HalX_2]$) derivatives of iodine and bromine, transformations at the halogen centre of those polyvalent compounds and selected applications and their use as reagents are referred. Trends of ¹⁹F and ¹³C NMR spectroscopic properties of prototypes of polyvalent perfluoroorgano-iodine and -bromine compounds are compiled and interpreted. Structural features of characteristic perfluoroalkyl-, pentafluorophenyliodine(III and V), and few -bromine(III) compounds are presented and compared.

© 2008 Elsevier B.V. All rights reserved.

1.	Introd	luction	460		
2. Reaction routes to polyvalent per- and polyfluoroorganohalogen(III and V) compounds					
2.1. Per- and polyfluoroorganoiodine(III) compounds					
	2.1.1. Syntheses of per- and polyfluoroorganoiodine(III) molecules, R _F IX ₂ and R _F IXY	460			
		2.1.2. Syntheses of bis- and tris(perfluoroaryl)iodine(III) molecules $(Ar_F)_2 I A A A A A A A A A A A A A A A A A A $	461		
		2.1.3. Per- and polyfluoroorganoiodonium(III) salts $[R_F(R')I]Y$ and $[R_F(X)I]Y$	461		
		2.1.4. Perfluoroalkyliodate anions $[(R_F)_n IX_{4-n}]^-$	464		
	2.2.	Per- and polyfluoroorganoiodine(V) compounds	464		
		2.2.1. Per- and polyfluoroorganoiodine(V) molecules, R _F IF ₄	464		
		2.2.2. Per- and polyfluoroorganoiodonium(V) salts [R _F (R')IF ₂]Y	465		
	2.3.	Perfluoroorganobromine(III) compounds	465		
		2.3.1. Perfluoroorganobromine(III) molecules, R _F BrF ₂	465		
		2.3.2. Perfluoroorganobromonium salts [R _F (R')Br]Y	465		
	2.4.	Perfluoroorganobromine(V) molecules, R _F BrF ₄ and R _F BrO ₂	466		
	2.5.	Perfluoroarylchlorine(III and V) molecules	466		
3.	Typica	al transformations on polyvalent perfluoroorganohalogen(III and V) compounds and important reactivities of the halogen centers	466		
4.	Polyva	alent perfluoroorganoiodine compounds: applications and reagents in synthetic chemistry	468		
5.	NMR s	spectroscopic characteristics of polyvalent perfluoroorganoiodine and bromine(III and V) compounds	468		
6.	Struct	tural characteristics of polyvalent perfluoroorganoiodine(III and V) compounds	470		
7.	Summ	nary	471		
	Ackno	owledgements	471		
	Refere	ences	471		

* Corresponding author. Tel.: +49 203 379 3310; fax: +49 203 379 2231. *E-mail address:* h-j.frohn@uni-due.de (H.-J. Frohn).

^{0022-1139/\$ –} see front matter \circledcirc 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jfluchem.2008.04.001

1. Introduction

Polyvalent per- and polyfluoroorganohalogen(III and V) compounds are here considered as derivatives of the neutral halogen fluorides $HalF_n$ ($n \ge 3$) and their cationic and anionic species. Thus, we exclude two-coordinated derivatives of R_FI like $[(R_F)_2I]^-$, [R_FIX]⁻, and R_FI base adducts. Only polyvalent iodine and bromine(III and V) compounds are known as individuals up to now. Polyvalent halogen compounds with hypervalent bonds [1] mark one subgroup. Different kinds of bonds may be present in polyvalent halogen molecules, e.g. in RHalX₂ molecules with Tgeometry and the VSEPR notation ABX_2E_2 (A = central halogen, B and X = ligands, E = electron lone pair) there are distinct bonds to R and X. The Hal-R bond is a 2c-2e bond whereas the linear X-Hal-X bond is a 3c-4e one. The latter Hal-X bonds are characterised by a bond order of 0.5 and a significant polar component with a distinctive partial positive charge on Hal and a negative one on X. Even RHal=O and other derivatives with a double bond to halogen in their Lewis formula possess hypervalent bonds.

During the last two decades a substantial number of reviews [2a–i] and some books [2j–n] dealt with polyvalent organoiodine compounds and their chemistry. Usually per- and polyfluoroor-gano species were not in the focus of interest or they were excluded completely.

Within this review only polyvalent iodine and bromine compounds are considered which have at least one perfluorinated organo group (or a selected highly fluorinated organo group like a perfluoroalkyl group with a CH₂ spacer) directly attached to the halogen center.

2. Reaction routes to polyvalent per- and polyfluoroorganohalogen(III and V) compounds

The majority of described polyvalent per- and polyfluoroorganohalogen compounds are iodine(III) derivatives. The corresponding iodine(V) compounds are less represented in literature. To our knowledge, no polyvalent per- and polyfluoroorgano derivatives of iodine(VII) are known so far. Consequently, this chapter mainly deals with R_FIX_2 and R_FIX_4 and its cationic derivatives $[R_FRI]^+$ and $[R_FRF_2I]^+$. From the two anionic polyvalent iodine(III) species one was isolated and one was deduced from its NMR data in a product mixture of the reaction solution.

2.1. Per- and polyfluoroorganoiodine(III) compounds

The majority of reported $R_FI(III)$ molecules can be described by the formula R_FIX_2 . R_FIXY molecules represent a minority. The sparely known examples of $(R_F)_2IX$ and $(R_F)_3I$ molecules are discussed as reaction products of R_FIX_2 in Section 2.1.2.

2.1.1. Syntheses of per- and polyfluoroorganoiodine(III) molecules, $R_F I X_2$ and $R_F I X Y$

One commonly applied access to R_FIX_2 molecules uses the oxidative addition of X_2 to R_FI . In this case X may be F, Cl, or OR. The monovalent iodine compound R_FI can be treated with the elements F_2 and Cl_2 , with ROOR, or with formal sources of F, Cl or OR radicals. Reactions with elemental fluorine have to be performed in "inert" solvents like CCl₃F with diluted F_2 gas mixtures ($\leq 10\%$ F_2) at low temperatures, typically -78 °C (Eq. (1)). This approach was originally developed in 1959 by Schmeißer and Scharf [3] for CF₃IF₂ and later applied and modified for other perfluoroalkyl, perfluoroalkenyl, and perfluoroaryl iodides

$$R_{F}I + F_{2}(diluted) \xrightarrow{CCl_{3}F, -78 \,^{\circ}C} R_{F}IF_{2}$$

$$\tag{1}$$

where $R_F = CF_3$ [3], C_2F_5 , $n-C_3F_7$ [4], $i-C_3F_7$ [5], C_4F_9 [6], CF_2CF_2 [7], *cis-*, *trans-*(CF₃)₂CFCF=CF [5], *cyclo-C*₆F₇ [8], C_6F_5 [9,10], 2,6- $C_6F_2H_3$ [11]. The precipitation of products, R_FIF_2 , protects them against further fluorination to R_FIF_4 .

The direct chlorination of perfluoroalkyl iodides to R_FICl_2 was not successful [12]. At this point we should remember that R_FI molecules have a partial positive charge on iodine in common. The addition of chlorine to R_FI needs activation (photochemically [13] or by the use of Lewis acids [14] (Eq. (2a)) as demonstrated in the case of C_6F_5I

$$C_{6}F_{5}I + CI_{2} \frac{{}^{[AICl_{3}]}}{CCl_{3}F_{-}78 \circ C} C_{6}F_{5}ICl_{2} \tag{2a}$$

In contrast, polyfluoroalkyl iodides with one CH_2 unit as spacer between I and the C_nF_{2n+1} unit, form polyfluoroalkyliodine dichlorides by direct chlorine addition (Eq. (2b)) [15]

$$C_n F_{2n+1} CH_2 I + Cl_2 \rightarrow C_n F_{2n+1} CH_2 ICl_2$$
(2b)

where *n* = 1–3.

Peroxo compounds ROOR allow the addition of two OR radicals to R_{FI} (Eq. (3))

$$R_{F}I + ROOR \rightarrow R_{F}I(OR)_{2}, \tag{3}$$

where $R_F = CF_3$, C_3F_7 ; $R = S(O)_2F$ [16].

As an alternative to elemental fluorine, the following fluorinating agents can be used for the conversion of R_FI to R_FIF₂: XeF₂ (R_F = C₃F₇ [17], C₄F₉ [18], CF₃CH₂ [18,19], C₆F₅ [17,20], 2,3,5,6-C₅F₄N [21]) [C₆F₅XeF₂]⁺ (R_F = C₆F₅ [22]), ClF (R_F = C₆F₅ [10]), ClF₃ (R_F = C₂F₅, *n*- and *i*-C₃F₇, C₄F₉, C₆F₁₃, C₁₀F₂₁ [6,23,24]; BrF₃ (R_F = C₄F₉ [6,24]), C₆F₅BrF₂ (R_F = C₆F₅ [10]), BrF₅ (R_F = C₂F₅, C₄F₉ [6,24]), C₆F₅BrF₄ (R_F = C₆F₅ [10]), and [(C₆F₅)₂IF₂]⁺ (R_F = C₆F₅ [25,26]). The action of halogen fluorides often results in a mixture of R_FIF₂ and R_FIF₄, and it was difficult to optimise the reaction conditions for the preparation of pure products. It is worth mentioning that the fluorinating ability of the mild fluoro oxidiser IF₅ is insufficient for fluorine addition to iodine in Alk_FI or in C₆F₅I [10]. In the latter case, the activation of IF₅ with BF₃ (Lewis acid) resulted in the addition of two fluorine atoms across one C=C double bond of C₆F₅I [8].

The formation of $R_{\rm F} IF_2$ with CIF, CIF₃, and ClOCF₃ is described in the following equations

$$C_6F_5I + 2CIF \xrightarrow{CCl_3F_5 - 70°C} C_6F_5IF_2 + Cl_2$$

$$\tag{4}$$

$$3R_{F}I + 2CIF_{3} \xrightarrow{C_{6}F_{14}, \cdots -78 \,^{\circ}C} 3R_{F}IF_{2} + CI_{2}$$

$$\tag{5}$$

where $R_F = C_2F_5$, C_3F_7 , C_4F_9 , C_6F_{13} , $C_{10}F_{21}$.

$$R_F I + 2ClOCF_3 \rightarrow R_F IF_2 + Cl_2 + 2C(0)F_2 \tag{6}$$

where R_FI = CF_3 (without solvent, $-70\ ^\circ C$ [27]), C_6F_5 (CCl_3F, $\leq -78\ ^\circ C$ [10]).

Another frequently used path to R_FIY_2 or R_FIXY compounds has a strong similarity to that presented by Eqs. (4) and (6), and is based on the addition of dipolar reagents XY (mainly, X = Cl). The products of addition reactions with ClOCF₃, ClOC(CF₃)₃, ClONO₂, ClOS(O)₂F, ClOClO₃, and Cl₂O strongly depend on the reaction conditions. Astonishingly, CF₃I(Cl)F resulted as a product when a large excess of ClOCF₃ was applied (Eq. (7)) [28]. R_FI reacts with \geq 2ClOC(CF₃)₃ yielding $R_FI(OC(CF_3)_3)_2$ ($R_F = CF_3$, CF₂CF₂, SF₅CF₂CF₂, C₆F₅) (Eq. (8)) [29]. The reaction of CF₃I with 2 equiv. of ClONO₂ ended with a mixture of CF₃ICl₂, CF₃I(Cl)ONO₂, and CF₃I(ONO₂)₂ (Eq. (9a)) [30]. C₆F₅I and 4 equiv. of ClONO₂ formed the desired product C₆F₅I(ONO₂)₂ (Eq. (9b)) [31]. Primary perfluoroalkyl iodides react with ClOS(O)₂F at low temperatures to give $R_FI(OS(O)_2F)_2$ (Eq. (10)) as an intermediate which after warming undergoes elimination of $IOS(O)_2F$ and results in $R_FOS(O)_2F$ [32]. In contrast, the secondary iodo compound $(CF_3)_2CFI$ forms the iodonium salt [($(CF_3)_2CF)_2I$][I $(OS(O)_2F)_4$] under similar conditions [32]. No addition product was detected as an intermediate in reactions of R_FI with ClOClO₃. The consecutive product [$(R_F)_2I$][I $(O-ClO_3]_4$] could be identified but decomposed finally to R_FOClO_3 [33]. In a similar manner the oxidative addition of OCl groups was performed when 2 equiv. of Cl₂O were added to C₆F₅I at -60 °C (Eq. (11)) [14]. $C_nF_{2n+1}I(OTeF_5)_2$ was obtained by addition of ClOTeF₅ (Eq. (12)). CF₃I $(OTeF_5)_2$ decomposed above -78 °C to give CF₃OTeF₅ [34]

$$CF_3I + CIOCF_3 (excess) \rightarrow CF_3I(CI)F + COF_2$$
 (7)

 $R_F I \ + \ 2 ClOC(CF_3)_3 \ \rightarrow \ R_F I(OC(CF_3)_3)_2 + Cl_2 \eqno(8)$

$$CF_{3}I + 3CIONO_{2} \rightarrow CF_{3}ICl_{2} + CF_{3}I(Cl)ONO_{2} + CF_{3}I(ONO_{2})_{2}$$
(9a)

$$C_6F_5I + 2ClONO_2 \rightarrow C_6F_5I(ONO_2)_2 + Cl_2 \tag{9b}$$

 $R_F I + 2ClOS(O)_2 F \rightarrow R_F I(OS(O)_2 F)_2 + Cl_2 \tag{10}$

 $C_6F_5I + 2Cl_2O \rightarrow C_6F_5I(OCl)_2 + Cl_2 \tag{11}$

 $C_n F_{2n+1} I + 2CIOTeF_5 \rightarrow C_n F_{2n+1} I(OTeF_5)_2 + Cl_2$ (12)

where n = 1-3.

The following routes from monovalent R_FI to trivalent R_FIX_2 combine individual oxidation steps with a metathesis and are used to synthesise perfluoroorganoiodine di(carboxylates), $R_FI(O-C(O)R)_2$. The oxidation can be performed with ozone [35], HNO₃ [36], or a peroxoacid [12,37,38]. These reactions (Eqs. (13) and (14)) are very likely to proceed via the intermediate formation of R_FIO

$$\begin{split} R_F I &= 2HNO_3 + 2(CF_3C(O))_2O \\ &\to R_F I(OC(O)CF_3)_2 + 2CF_3C(O)OH + 2NO_2 \end{split}$$

$$\begin{aligned} R_F I &+ CF_3 C(0) OOH + (CF_3 C(0))_2 O \\ &\rightarrow R_F I(OC(0) CF_3)_2 + CF_3 C(0) OH \end{aligned}$$

where $R_FI = Alk_FI$, $Aryl_FI$, $I(CF_2CF_2)_nI$.

Some representatives of R_FIO were prepared independently, and they may be considered as interesting starting materials for further R_FI(III) compounds. However, the stability data of R_FIO should be interpreted carefully, e.g. violent explosions of C₆F₅IO at 60 °C (caution!)[39], significantly below the reported temperature of decomposition at 89 °C [36,40] or 210 °C [39], are documented in the literature. The direct addition of oxygen to R_FI with ozone is neither a simple nor a clean preparative route (Eq. (15))[35] and failed in case of C₆F₅I [41]. Therefore, the hydrolysis of R_FIX₂ is a common way to R_FIO (see Section 3)

$$CF_3I + O_3 \xrightarrow{CCI_3F, \leq -40^{\circ}C} CF_3IO + O_2$$
(15)

Generally, the nucleophilic introduction of per- and polyfluoroorgano groups is possible starting from suitable I(III) compounds, e.g. IF₃, ICl₃, I(OC(O)CF₃)₃, and I(ONO₂)₃. The substitution of one fluorine in IF₃ is not a favoured preparative route, because IF₃ only exists at low temperatures and disproportionates above -35 °C [42] finally forming I₂ and IF₅. Only one successful fluorine/ perfluoroorgano group substitution reaction has been reported which used Cd(C₆F₅)₂ as reagent in EtCN at -78 °C (Eq. (16)). The yield of C₆F₅IF₂ was low (34%). Besides the by-products C₆F₅I (16%) and C₆F₅H (37%) the interesting molecule (C₆F₅)₃I (3%) was observed as a trace product [43]

$$2IF_3 + Cd(C_6F_5)_2 \xrightarrow{EtCN, -78\,^{\circ}C} 2C_6F_5IF_2 + CdF_2$$

$$\tag{16}$$

 $Cd(CF_3)_2$ ·donor, $Cd(CF_3)X$ ·donor, and $Bi(CF_3)_nX_{3-n}$ (n = 1-3) were offered as reagents for the nucleophilic introduction of trifluoromethyl groups into ICl₃, I(OC(O)CF₃)₃, and I(ONO₂)₃ (Eqs. (17) and (18)) [44]

$$IX_3 + Cd(CF_3)_2 \cdot donor \rightarrow CF_3 IX_2 + Cd(CF_3)X \cdot donor$$
(17)

$$IX_3 + Bi(CF_3)_3 \rightarrow CF_3IX_2 + Bi(CF_3)_2X$$
(18)

where X = Cl, $OC(O)CF_3$, ONO_2 .

In the literature only one example is reported which shows that besides addition of fluorine to the iodine atom accessorily a substitution of H by F proceeded at the organo group and the alkyl iodide was finally transformed into the corresponding perfluoroorgano group (Eq. (19)) [45]

$$CH_{3}I + 2.5 F_{2} - N_{2}(1:20) \xrightarrow{CCI_{3}F, -110 \,^{\circ}C} CF_{3}IF_{2} + 3HF.$$
(19)

2.1.2. Syntheses of bis- and tris(perfluoroaryl)iodine(III) molecules $(Ar_F)_2 IX$ and $(Ar_F)_3 I$

To our knowledge, the family of $(Ar_F)_2|X$ and $(Ar_F)_3|$ compounds is represented by only two isolated species, $(C_6F_5)_2|F$ and $(C_6F_5)_3|$, which were characterised as individuals [46]. $(C_6F_5)_2|F$ was obtained on two routes (Eqs. (20) and (21)). The desired substitution of one hypervalently bonded fluorine in $C_6F_5|F_2$ was achieved with Bi(C_6F_5)₃ (3:1 molar ratio) in CH₂Cl₂. Alternatively, $(C_6F_5)_2|F$ precipitates after addition of NaF (in excess) to an aqueous solution of a suitable iodonium salt and can be isolated after extraction with CH₂Cl₂. $(C_6F_5)_2|F$ shows a high melting point of 202–204 °C and decomposes slowly in the melt. In water no hydrolysis proceeds. In aHF solution the iodonium polyfluoride salt $[(C_6F_5)_21][F(HF)_n]$ is formed and after removal of aHF ($C_6F_5)_2|F$ was recovered completely

$$3C_6F_5IF_2 + Bi(C_6F_5)_3 \xrightarrow{CH_2Cl_2} 3(C_6F_5)_2IF + BiF_3$$
⁽²⁰⁾

$$[(C_6F_5)_2I][BF_4] + > 1NaF \xrightarrow{H_2O} (C_6F_5)_2IF \downarrow + Na[BF_4] \downarrow$$
(21)

When $C_6F_5IF_2$ reacted with $Bi(C_6F_5)_3$ (slight excess, relative to the 3:2 stoichiometry, is necessary) in the basic solvent MeCN, $(C_6F_5)_3I$ was formed (Eq. (22)). In contrast to $(C_6F_5)_2IF$, $(C_6F_5)_3I$ shows two different types of C_6F_5 groups (¹⁹F NMR): one in a 2c-2e mode and two (with a more anionic character) in a 3c-4e mode. The formation of $(C_6F_5)_3I$ as a by-product in the reaction of IF₃ with $Cd(C_6F_5)_2$ was mentioned above [43]

$$3C_6F_5IF_2 + > 2Bi(C_6F_5)_3 \xrightarrow{MeCN} 3(C_6F_5)_3I + 2BiF_3.$$
(22)

2.1.3. Per- and polyfluoroorganoiodonium(III) salts $[R_F(R')I]Y$ and $[R_F(X)I]Y$

Routes to iodonium salts, [R(R')I]Y or [R(X)I]Y, with one or two C–I bonds in the cation can principally proceed from precursors with the same number of C–I bonds, e.g. by abstraction of a negatively charged ligand X from the I(III) molecules R(R')IX or RIX_2 (Eq. (23a)) or by addition of an electrophile, preferable a proton to a I=O or I=C double bond (Eq. (23b)), or by reduction of the corresponding organoiodine(V) precursor (Eq. (23c)). Additionally, the transformation (including fluorination) of one or both organo group(s) bonded to I(III) (Eq. (23d)) has to be mentioned

$$R(R')IX \text{ or } RIX_2 + LA \rightarrow [R(R')I][LA-X] \text{ or } [R(X)I][LA-X]$$
(23a)

$$RI=O \text{ or } RI=C(R')_2 + HY \rightarrow [RI(OH)]Y \text{ or } [RI(CH(R')_2)]Y$$
(23b)

$$R(R')IX_3 + 2e^- \to [R(R')I]X + 2X^-$$
(23c)

$$[R(R')I]Y \to [R(R'')I]Y \text{ or } [R''(R''')I]Y$$
(23d)

In case of perfluorinated iodonium salts the routes in (Eqs. (23a)-(23c)) describe no useful paths and no example of route (Eq. (23d)) has been reported so far. The perfluoroorganyliodonium salts $[R_FIX]Y$ (X = F, OC(O)CF₃, etc.) or structurally related species (Eq. (23a)) were discussed as intermediates in reactions of R_FIX_2 with Lewis acids. Yagupol'skii et al. observed the precipitation of a product "[R_FIF][BF₄]" when BF₃ was bubbled into the dichloromethane solution of $R_F IF_2$ ($R_F = C_3 F_7$, $C_6 F_{13}$) at low temperatures, but they did not study the nature of this solid [47]. The protonation of $C_6H_5I = C(SO_2X)_2$ (X = F, CF₃) with HOTf in CH₂Cl₂ resulted in a solution of $[C_6H_5(CH(SO_2X)_2)I][OTf]$, while under the same conditions, the corresponding pentafluorophenyl derivative, [C₆F₅(CH(SO₂F)₂)I][OTf], was detected only as a minor component of a complex mixture by ¹⁹F NMR [48]. The dissolution of C_6F_5IO in cold (-50 °C) HSO₃F was described rather as the donor-acceptor complex $[C_6F_5I=O\cdot HOSO_2F]$ than as the salt $[C_6F_5(OH)I][OSO_2F]$. In the stronger acid (HSO₃F–SbF₅) C₆F₅IO decomposed and iodine was formed [49].

Perfluoroorganoiodonium salts $[R_F(R')I]Y$ with all kinds of organo groups were preferentially prepared by methods which enable the formation of a second carbon–iodine bond. Some of the applied methods are common procedures whereas others are less familiar.

The formal addition of a carbocation characterises one approach. Thus, the salt $[CF_3(CH_3)I][MF_6]$ was obtained by the electrophilic methylation of CF_3I with CH_3F and MF_5 in SO_2 (Eq. (24a)) [50]. Mono- and di-methylation of 1,4-diiodotetra-fluorobenzene occurred similarly (Eq. (24b)) [51]:

$$CF_{3}I + CH_{3}F + MF_{5} \xrightarrow{SO_{2,}-78 \,^{\circ}C} [CF_{3}(CH_{3})I][MF_{6}] (M = As, Sb)$$
(24a)

$$\begin{split} 1, & 4\text{-}C_{6}F_{4}I_{2} + CH_{3}F + SbF_{5} \frac{SO_{2}}{-78\,^{\circ}C} [4\text{-}IC_{6}F_{4}(ICH_{3})] [SbF_{6}] \\ & + [1, & 4\text{-}C_{6}F_{4}(ICH_{3})_{2}] [SbF_{6}]_{2} \end{split} \tag{24b}$$

Perfluoroalkynylxenonium tetrafluoroborates displayed excellent alkynylating properties in reactions with alkyl-, trifluorovinyl-, and fluoroaryl-iodides (Eq. (25)) [52]

$$[CF_3C \equiv CXe][BF_4] + R'I \xrightarrow[-30 \text{ to } 20^\circ C] [CF_3C \equiv C(R')I][BF_4] + Xe$$
(25)

where $R' = CF_3CH_2$, CF_2 — CF_5 , C_6F_5 , $3-FC_6H_4$.

The synthesis of $[(C_6F_5)_2I][AsF_6]$ was successfully performed in the high viscous melt of salt $[C_6F_5Xe][AsF_6]$ with a 10-fold excess of C_6F_5I at 140 °C (Eq. (26)) [40]

$$C_{6}F_{5}I(excess) + [C_{6}F_{5}Xe][AsF_{6}] \xrightarrow[molt,1 h]{140^{\circ}C}_{molt,1 h} [(C_{6}F_{5})_{2}I][AsF_{6}] + Xe^{0}$$
(26)

Both reactions, (25) and (26), and the formation of $[(C_6F_5)_2I][(C_6F_5)_3BF]$ from C_6F_5I and $[C_6F_5Xe][(C_6F_5)_3BF]$ in acetonitrile solution at 20 °C [53] occurred in an electrophilic pathway. Further investigations showed however that the related salts, $[C_6F_5Xe]Y(Y = [AsF_6, C_6F_5BF_3])$, did not react with iodopentafluorobenzene (MeCN, 20 °C, 70 h; MeCN, 80 °C, 4 h; CH₂Cl₂, 80 °C, 4 h [40]). It can be assumed that the pentafluorophenylation of C_6F_5I occurred via the electrophilic pentafluorophenyl radical generated by the thermal decomposition of $[C_6F_5Xe][AsF_6]$ (in the melt) or $[C_6F_5Xe][C_6F_5]BF]$ (in solution). The inertness of C_6F_5I to $[2,4,6-C_6F_3H_2Xe][BF_4]$ in MeCN at 20 °C and the formation of $[2,4,6-C_6F_3H_2(C_6F_5)I][BF_4]$ at 60 °C [54] can be explained in the same way.

The generation of an organyliodine(III) electrophile and the subsequent reaction with an appropriate aromatic compound ArH provided an effective access to per- and polyfluorinated organyl-(aryl)iodonium salts and was first described by Yagupol'skii and co-workers [55]. The first step in this sequence involves the polarization, e.g. (a) of one I–F bond in R_FIF₂ by BF₃ (Eq. (27) or (b) of one I–O bond by protonation of the oxygen-containing acyloxy ligand directly bonded to I(III) (Eq. (28)):

$$R_{F}IF_{2} + BF_{3} \rightarrow \langle R_{F}IF - FBF_{3} \rangle \frac{ArH}{-HF} [R_{F}(Ar)I][BF_{4}]$$
(27)

$$R_{F}I(OC(O)R')_{2} \xrightarrow{H^{+}} [R_{F}IOC(O)R'(OC(OH)R')]^{+} \xrightarrow{ArH}_{-HOC(O)R'} [RF(Ar)I][OC(O)R']$$
(28)

The generation of the electrophile according to (Eq. (29)) occurred when bubbling BF₃ into the cold (-60 °C) solution of R_FIF₂ in CH₂Cl₂ or CHCl₃, whereupon a precipitate was formed. The subsequent addition of benzene or toluene at 20 °C yielded the iodonium salt [R_F(Ar)I][BF₄] [47]. α, ω -Bis(aryliodonium)perfluoro-alkylene salts were obtained similarly (Eq. (30)) [38]

$$R_{F}IF_{2} + BF_{3} \frac{1.CH_{2}CI_{2,-}60^{\circ}C}{2.C_{6}H_{6,-}60 \text{ to } 20^{\circ}C} [R_{F}(C_{6}H_{5})I][BF_{4}]$$
(29)

where $R_F = C_3 F_7$; $C_6 F_{13}$

$$F_{2}I(CF_{2}CF_{2})_{n}IF_{2} + 2C_{6}H_{6} + 2BF_{3} \xrightarrow{1.CH_{2}CI_{2},-60 \circ C}_{2.C_{6}H_{6},-60 \text{ to } 20^{\circ}C} [C_{6}H_{5}I(CF_{2}CF_{2})_{n}IC_{6}H_{5}][BF_{4}]_{2}$$
(30)

where n = 2, 3. The electrophilic iodopentafluophenylation of mesitylene was performed in high yield under modified conditions (Eq. (31)) [5]

$$\begin{array}{c} C_{6}F_{5}IF_{2}+BF_{3}\cdot\\ NCCH_{3} \xrightarrow[2.1,3,5-C_{6}H_{3}(CH_{3})_{3}]}^{1.MeCN,-40\,^{\circ}C} \left[C_{6}F_{5}(2,4,6-C_{6}H_{2}(CH_{3})_{3})I\right][BF_{4}] \end{array} \tag{31}$$

The solution of per- and polyfluoroalkyliodine bis(trifluoroacetate) in CF₃C(O)OH reacted with benzene and toluene at 0 °C to give per- and polyfluoroalkyl(aryl)iodonium trifluoroacetate. The latter can be converted into the corresponding halides [37,55]. Pentafluorophenyliodonium salts were obtained analogously (Eq. (32))

$$R_{F}I(OC(O)CF_{3})_{2} + ArH \frac{1.CF_{3}C(O)OH,0 \,^{\circ}C,60-100 \,h}{2.MY,-M[OC(O)CF_{3}]} [R_{F}(Ar)I]Y \tag{32}$$

where $R_F = C_3F_7$, C_6F_{13} , $H(CF_2CF_2)_2CH_2$, $H(CF_2CF_2)_3CH_2$, C_6F_5 ; $Ar = C_6H_5$; $CH_3C_6H_4$; MY = AgF in MeCN, aqueous NaCl or aqueous [Et₄N]Br.

It is interesting that the reactivity of $(CF_3C(O)O)_2I(CF_2CF_2)_nI(O-C(O)CF_3)_2$ towards ArH diminishes with the elongation of the carbon chain from n = 1 to 3. The ethane derivative (n = 1) reacted with benzene to yield the corresponding diiodonium salt, whereas the reaction with toluene occurred too rigorous and gave tar. The butane derivative (n = 2) did not react with C_6H_6 whereas the reaction with $C_6H_5CH_3$ was completed after 14 d. The hexane derivative (n = 3) did neither react with benzene nor with toluene [38] (Eq. (33))

$$(CF_{3}C(0)O)_{2}I(CF_{2}CF_{2})_{n}I(OC(0)CF_{3})_{2} + ArH \xrightarrow{CF_{3}C(0)OH}_{25\circ C} [ArI(CF_{2}CF_{2})_{n}IAr][OC(0)CF_{3}]_{2}$$
(33)

where n = 1, Ar = C₆H₅; n = 2, Ar = 4-CH₃C₆H₄.

Umemoto et al. improved this method significantly by using the stronger protic acids (HOTf, $HOS(O)_2F$ or H_2SO_4) instead of CF₃C(O)OH [56,57]. Under these conditions, the reaction of perfluoroalkyliodine bis(trifluoroacetates) with benzene or fluorobenzene was completed within 1 d to give perfluoroalkyl(aryl)-iodonium salts in high yields (Eqs. (34a)–(34c))

$$\begin{array}{l} R_{F}I(OC(O)CF_{3})_{2}+C_{6}H_{6} \\ +HY_{\substack{0^{\circ}C,\,1\,d}}^{CF_{2}CICFCI_{2}}[R_{F}(C_{6}H_{5})I]Y+2CF_{3}C(O)OH \end{array} \tag{34a}$$

where $R_F = C_n F_{2n+1}$ (*n* = 2, 3, 4, 6, 7, 8, 10), (CF₃)₂CF, CF₂BrCF₂, H(CF₂)₁₀

where $R_F = CF_3$, C_3F_7 , C_7F_{15} , $H(CF_2)_{10}$, HY = HOTf, $HOS(O)_2F$, H_2SO_4

where *m* = 3, 8.

Furthermore, poly- and even perfluorinated diaryliodonium salts could be prepared by this method as demonstrated by the synthesis of bis(2,6-difluorophenyl)iodonium triflate [11] (Eq. (35)) and bis(pentafluorophenyl)iodonium triflate. The latter was obtained directly from pentafluorobenzene and iodine tris(trifluoroacetate) in the presence of HOTf. It is likely that the reaction proceeds via $C_6F_5I(OC(O)CF_3)_2$ [58] (Eq. (36))

$$2,6-C_{6}F_{2}H_{3}I(OC(0)CF_{3})_{2} + 1, 3-C_{6}F_{2}H_{4} + HOTf_{20\stackrel{\circ}{\circ}C,48h}^{CF_{3}C(0)OH}[(2,6-C_{6}F_{2}H_{3})_{2}I][OTf]$$
(35)

$$2C_{6}F_{5}H + I(OC(O)CF_{3})_{3} + HOTf_{20 \overset{\circ}{\sim} C,72 h}^{CF_{3}C(0)OH} [(C_{6}F_{5})_{2}I][OTf]$$
(36)

A useful approach to polyfluoroalkyl(aryl)iodonium sulfonates and polyfluoroalkyl(alkynyl)iodonium sulfonates was elaborated by Zhdankin et al. [59–61]. They found out that 1-[hydroxy(sulfonyloxy)iodo]-1H,1H-perfluoroalkanes (see Section 3, Eq. (77)) smoothly react with aryltrimethylsilanes and alkynyltrimethylsilanes under very mild conditions to give iodonium salts in high yields. In contrast to the methods discussed above, this procedure does not require the presence of acids and can be employed in case of acid-sensitive substrates (Eqs. (37a) and (37b))

$$\begin{split} & C_{n}F_{2n+1}CH_{2}I(OH)Y + ArSiMe_{3} \underset{-30 \text{ to } 0^{\circ}\text{C},2 \text{ }h}{\overset{CH_{2}Cl_{2}}{\longrightarrow}} [C_{n}F_{2n+1}CH_{2}(Ar)I]Y \\ & + 0.5(Me_{3}Si)_{2}O + 0.5H_{2}O \end{split} \tag{37a}$$

where n = 1, 2; Ar = C₆H₅, 2-MeC₆H₄, 4-MeC₆H₄, 4-MeOC₆H₄, 4-Me₃SiC₆H₄, 4-ClC₆H₄; Y = OTf, OTs

$$C_{n}F_{2n+1}CH_{2}I(OH)OTf$$

$$+ R''C \equiv CSiMe_{3} \xrightarrow{CH_{2}Cl_{2}} [C_{n}F_{2n+1}CH_{2}(R''C \equiv C)I][OTf]$$

$$+ 0.5(Me_{3}Si)_{2}O + 0.5H_{2}O$$
(37b)

where n = 1(-30 to $0 \degree C$, 2 h), n = 2 (reflux, 2 h), R'' = Ph, *t*-Bu, Me₃Si.

In contrast, 1-[hydroxy(sulfonyloxy)iodo]perfluoroalkanes, $C_nF_{2n+1}I(OH)OTf$, were less reactive and did not react with alkynyltrimethylsilanes. Iodoperfluoroalkyldesilylation of aryltri-

methylsilanes with Y = OS(O)₂CF₃ proceeded in the presence of Me₃SiOTf, whereas the reactions with Y = OS(O)₂CH₃) and Y = 4-OS(O)₂C₆H₄CH₃) were much slower even in the presence of CF₃C(O)OH (3–4 equiv.) (Eq. (37c)) [59,60]

$$\begin{split} & C_n F_{2n+1} I(OH) OTf + ArSiMe_3 \overset{Me_3 SiOTf, CH_2 Cl_2}{\longrightarrow} [C_n F_{2n+1}(Ar) I] [OTf] \\ & + 0.5 (Me_3 Si)_2 O + 0.5 H_2 O \end{split} \tag{37c}$$

where n = 2, 3, 4, 6, 8; Ar = C₆H₅, 2-MeC₆H₄, 4-MeC₆H₄, 4-MeOC₆H₄, 4-Me₃SiC₆H₄, 4-ClC₆H₄.

Usually, reactions of polyfluoroorganyliodine(III) electrophiles derived from R_FIX_2 with ArH, ArSiMe₃, and $R''C \equiv CSiMe_3$ are very attractive for the preparation of asymmetric iodonium salts $[R_F(R)I]Y$ (R = Ar, $R''C \equiv C$). This route is restricted to sufficiently nucleophilic partners ArH or aryl- and alkynyltrimethylsilanes, because of the relative weakness of the iodine electrophiles applied here.

A convenient approach to per- and polyfluorinated iodonium salts is based on the reaction of organyliodine(III) difluoride with organoboranes, RBX₂. Initially, this reaction was performed with triarylboranes (X = R) and resulted in diaryliodonium arylfluoroborates (Eqs. (38a) and (38b)) [53,43,62]. Later, Naumann et al. performed it in the presence of BF₃·OMe₂, and thus obtained the corresponding tetrafluoroborates (Eq. (38c)) [54,11]

$$C_6F_5IF_2 + B(C_6F_5)_3 \xrightarrow{solvent} [(C_6F_5)_2I][(C_6F_5)_nBF_{4-n}](n = 0 - 4)$$
 (38a)

Solvent: CH₂Cl₂ (-50 °C, 1 h) or MeCN (-40 °C, 4 d) [53,62]

$$IF_{3} + B(C_{6}F_{5})_{3} \stackrel{CH_{2}Cl_{2}}{_{-78\,^{\circ}C}} [(C_{6}F_{5})_{2}I] [(C_{6}F_{5})_{n}BF_{4-n}](n = 0 - 3)$$
(38b)

$$3R_{F}IF_{2} + BAr_{3} + 2BF_{3} \cdot OMe_{2} \frac{CH_{2}Cl_{2}}{-40^{\circ}C,24 h} 3[R_{F}(Ar)I][BF_{4}] \tag{38c}$$

where $R_F = C_6F_5$, 2,6- $C_6F_2H_3$; Ar = 2-FC₆H₄, 3-FC₆H₄, 4-FC₆H₄, 2,6-C₆F₂H₃, 2,4,6-C₆F₃H₂, C₆F₅.

A straightforward preparative approach to per- and polyfluoroorganodifluoroboranes R_FBF_2 ($R_F = C_6F_nH_{5-n}$, R''CF = CF, $CF_2 = CR''$, $R''C\equiv$ C) in weakly coordinating solvents (CH_2Cl_2 , 1,1,1,3,3-pentafluoropropane (PFP), 1,1,1,3,3-pentafluorobutane (PFB)) was developed by Frohn and Bardin in the last decade [63,64] and allowed the syntheses of a number of symmetric and asymmetric bis(per- and polyfluoroaryl)iodonium (Eqs. (39a) and (39b)) [65,21,66], perfluoroalkenyl(aryl)iodonium (Eq. (39c)) [21,66], perfluoroalkynyl(aryl)iodonium, perfluoroalkynyl(perfluoroalkenyl)iodonium, perfluoroalkynyl(polyfluoroalkyl)iodonium (Eq. (39d)) [18], and perfluoroalkyl(perfluorophenyl) iodonium [5,67] tetrafluoroborates (Eq. (39e))

$$C_{6}F_{5}IF_{2} + ArBF_{2} \frac{CH_{2}Cl_{2}}{0 to 22 \circ C} [C_{6}F_{5}(Ar)I][BF_{4}] \tag{39a}$$

where Ar = C_6H_5 , 2-F C_6H_4 , 3-F C_6H_4 , 4-F C_6H_4 , 2,6- $C_6F_2H_3$, 3,5-C₆F₂H₃, 2,4,6-C₆F₃H₂, 3,4,5-C₆F₃H₂, C₆F₅, 4-C₅F₄N

$$(4-C_5F_4N)IF_2 + (4-C_5F_4N)BF_2 \underset{0^{\circ}C,10\,min}{\overset{CH_2Cl_2}{_{0^{\circ}C,10\,min}}} [(4-C_5F_4N)_2I][BF_4] \tag{39b}$$

$$R'IF_{2} + R''CF = CFBF_{2} \frac{CH_{2}Cl_{2}}{-60 \,^{\circ}C} [R'(R''CF = CF)I][BF_{4}]$$
(39c)

where R' = C₆H₅, 2-FC₆H₄, 3-FC₆H₄, 4-FC₆H₄, C₆F₅, R" = F, trans-CF₃

$$R_{F}IF_{2} + R''C \equiv CBF_{2} \xrightarrow{PFPorCH_{2}CI_{2}}_{-60 \text{ to} -10^{\circ}\text{C}, 34\text{ d}} [R_{F}(R''C \equiv C)I][BF_{4}]$$
(39d)

where $R_F = C_6F_5$, $(CF_3)_2CFCF = CF$, C_4F_9 , CF_3CH_2 ; $R'' = (CH_3)_3C$, CF_3 , $(CF_3)_2CF$

$$C_{6}F_{5}BF_{2} + C_{6}F_{13}IF_{2}\frac{cCl_{3}F}{0 \circ C}[C_{6}F_{5}(C_{6}F_{13})I][BF_{4}]$$
(39e)

The transfer of the organo group from boron to iodine(III) follows a Lewis acid–Lewis base interaction (Scheme 1). Two aspects are important for such acid-assisted nucleophilic substitutions: (a) the interaction of the acid RBX₂ with the IF₂ triad weakens one I–F bond and makes the iodine centre more electrophilic and (b) as a consequence of the interaction of the fluoro base with the acid RBX₂, the nucleofugality of the R group will increase.

Recently, phenylphosphorus(V) tetrafluoride was also successfully used for the preparation of fluoroaryl(phenyl)iodonium hexafluorophosphates (Eq. (40)) [21]

$$ArIF_{2} + C_{6}H_{5}PF_{4} \xrightarrow[-60^{\circ}C]{} [Ar(C_{6}H_{5})I][PF_{6}]$$
(40)

where $Ar = C_6F_5$, $4-FC_6H_4$.

In the presence of the strong Lewis acid, NbF₅, polyfluorophenyl groups are transferred from triarylbismuth to fluoroaryliodine(III) difluoride and diaryliodonium salts are formed in high yields (Eq. (41)) [68]

$$3ArIF_{2} + 3NbF_{5} + Bi(Ar')_{3} \xrightarrow[-40 \text{ to } 20^{\circ}\text{C}]{}^{3} [Ar(Ar')I][NbF_{6}] + BiF_{3}$$
(41)

where Ar = C_6F_5 , Ar' = 2,6- $C_6F_2H_3$, C_6F_5 ; Ar = 2,6- $C_6F_2H_3$, Ar' = 2,4,6- $C_6F_3H_2$.

Finally, reactions with a less general interest in the syntheses of polyfluoroorganyliodonium salts are reported. The bis(pentafluoro-phenyl)iodonium salt was obtained from $C_6F_5SiF_3$ and $[IF_4][SbF_6]$ in HSO₃F. During this conversion $C_6F_5IF_4$, one of the possible intermediates, could not be detected [69].

The most remarkable property of iodosylbenzene C_6H_5IO is the ability to disproportionate under controlled thermal conditions (steam distillation) yielding $C_6H_5IO_2$ and C_6H_5I . In contrast, its perfluorinated analogue, C_6F_5IO , formed the iodonium salt under similar conditions (Eq. (42)) [40]

$$3C_6F_5IO \xrightarrow[100°C.6h]{\longrightarrow} [(C_6F_5)_2I][IO_3] + C_6F_5I$$
(42)

Pentafluorophenyl(phenyl)iodonium chloride was obtained by the nucleophilic arylation of $PhICl_2$ with C_6F_5Li and then converted into the more stable trifluoroacetate (Eq. (43)) [9]

$$\begin{array}{c} C_{6}H_{5}ICl_{2}+C_{6}F_{5}Li\underset{-78 \text{ to } 20^{\circ}C}{\overset{ether}{\underset{-78 \text{ to } 20^{\circ}C}{\overset{-78}\underset{-23\%}{\underset{-78 \text{ to } 20^{\circ}C}{\overset{-78}\underset{-78}{\underset{-78 \text{ to } 20^{\circ}C}{\overset{-78 \text{ to } 20^{\circ}C}}}}[C_{6}F_{5}(C_{6}H_{5})I]Cl \\ \\ \overset{CF_{3}C(0)OH(CF_{3}C(0))_{2}O}{\underset{-78 \text{ to } 20^{\circ}C}{\overset{-78 \text{ to }$$

A few communications deal with bis(perfluoroalkyl)iodonium salts. Generally, the formation of onium salts from hypervalent precursors proceed under acidic conditions. Ref. [44] describes the formation of $[(CF_3)_2I]Y$ from CF_3IX_2 (X = F, Cl, OC(O)CF₃) and $(CF_3)_2Cd \cdot D$ (D = donor) as well under basic conditions (MeCN, pyridine) as under acidic conditions (B(OC(O)CF₃)₃ in CH₂Cl₂ or SO₂). The identification of $[(CF_3)_2I]Y$ by ¹⁹F NMR in the product mixtures was not unambiguous [44]. The reaction of $(CF_3)_2CFI$ with ClOX (X = ClO₃, SO₂F) gave solids (Eq. (44)) whereas the unbranched perfluoroalkyl iodides were converted into the corresponding ethers R_FOX (colorless liquids). Christe et al. proposed an ionic constitution of the solid products from the Raman spectroscopic comparison with M[I(OX)₄] salts [32,33]

$$2(CF_3)_2CFI + 2CIOX \xrightarrow{autoclave} [((CF_3)_2CF)_2I][I(OX)_4]$$
(44)

where X = ClO₃ (-196 to -45 °C, several days), SO₂F (-45 to 20 °C).

2.1.4. Perfluoroalkyliodate anions $[(R_F)_n IX_{4-n}]^-$

In the literature we have found only two examples of anions with perfluoroalkyl groups, namely cis-[(CF₃)₂IF₂]⁻ [44] and [CF₃ICl₃]⁻ [70].

cis-[(CF₃)₂IF₂]⁻ was assigned from the ¹⁹F NMR spectrum in the reaction mixture of CF₃IF₂ and Hg(CF₃)₂ in the weakly coordinating solvent CH₂Cl₂ (Eq. (45)). The [CF₃ICl₃]⁻ anion was formed from CF₃ICl₂ and Cl⁻ and was stabilised in the presence of the weakly polarising cation [Ph₄As]⁺ (Eq. (46))

$$CF_{3}IF_{2} + Hg(CF_{3})_{2} \stackrel{CH_{2}CI_{2},-30\,^{\circ}C}{\longrightarrow} cis - [(CF_{3})_{2}IF_{2}]^{-} + (CF_{3})_{2}IF + \dots$$
(45)

$$CF_{3}ICl_{2} + Ph_{4}AsCl^{CH_{2}Cl_{2}-78°C}[Ph_{4}As][CF_{3}ICl_{3}].$$

$$(46)$$

2.2. Per- and polyfluoroorganoiodine(V) compounds

2.2.1. Per- and polyfluoroorganoiodine(V) molecules, $R_F I F_4$

Two pathways to per- and polyfluoroorganoiodine(V) compounds are known: the oxidative route which starts from mono or trivalent per- and polyfluoroorganoiodine compounds and the nucleophilic introduction of the organo group into the inorganic iodine(V) parent compound, IF₅. No example of a disproportionation of R_FIX₂ into R_FIX₄ and R_FI in analogy to the disproportionation of IF₃ has been reported as a preparative route so far.

In order to reach I(V) it is obvious that (a) the fluorinating agent must be stronger and (b) the fluorinating conditions must be more severe than for I(III). Consequently, oxidative cleavage of the C–I bond and in case of unsaturated organo groups fluorine addition across double bonds are concurring reactions. The addition of F₂ to one of the two lone pairs of electrons at iodine in R_FIF₂ is in principle possible in inert solvents like CCl₃F. R_FIF₂, which is formed by the addition of F₂ to R_FI at -78 °C, is insoluble at this temperature. At -40 °C R_FIF₂ becomes soluble in trace amounts which react fast with F₂ (Eqs. (47a) and (47b)) or undergo by-reactions. Generally, the direct fluorination is not a favoured route to R_FIF₄

$$R_{F}I_{CCl_{3}F,-78 \circ C}^{F_{2}-N_{2}(\leq 10\%)}R_{F}IF_{2}\frac{F_{2}-N_{2}(< 10\%)}{Ccl_{3}F,-40 \circ C}R_{F}IF_{4}$$
(47a)

$$R_{F}I_{C1}^{F_{2}-N_{2}(\leq 10\%)}_{C1,F_{2}-40^{\circ}C}R_{F}IF_{4}$$

$$(47b)$$

where $R_F = CF_3$ [4].

The fluorination of monovalent R_FI to R_FIF_4 with ClF_3 (Eq. (48)) is a delicate reaction, which often ends with mixtures of I(III and V)

Scheme 1. The interaction between R_FIF₂ and RBX₂ and the introduction of group R into the iodine moiety.

products. In case of C_6F_5I addition across C—C double bonds has to be mentioned as one side-reaction

$$3R_{F}I + 4ClF_{3} \rightarrow 3R_{F}IF_{4} + 2Cl_{2} \tag{48}$$

where $R_{FI} = C_n F_{2n+1}$ (*n* = 1, 2, 3, 4, 6, 10) [6,71,72] $SF_5(CF_2)_n I$ (*n* = 2, 4) [73] C_6F_5I , 1,4- $C_6F_4I_2$ [74].

Excess of BrF₃ or BrF₅ is proposed for obtaining R_FIF₄ compounds (BrF₃ [6,24], BrF₅ (R_F = C₂F₅, C₄F₉, C₆F₁₃ [6,24], C₆F₅ [10])). C₆F₅I adds fluorine in a slow reaction with C₆F₅BrF₂ or C₆F₅BrF₄ and forms C₆F₅IF₄ besides to C₆F₅IF₂.

The addition of fluorine to R_FI or R_FIF_2 using XeF₂ is likewise a slow reaction [17] and can be accelerated by catalytic amounts of weak Lewis acids (Eq. (49)). The influence of stronger Lewis acids will be discussed below. The reaction of C_6F_5I with XeF₂ in aHF in the presence of equimolar amounts of water gives mixtures of $C_6F_5IF_2$ and $C_6F_5IF_4$ [20]

$$R_{F}I_{\leq 40^{\circ}C}^{\frac{XeF_{2}}{C}}R_{F}IF_{2}_{\leq 65^{\circ}C}^{\frac{XeF_{2}}{C}}R_{F}IF_{4}$$

$$\tag{49}$$

where $R_F = C_6F_5$ [17], 2,3,5,6- C_5F_4N [75].

Only one example describes the oxidative addition of fluorine to R_FIF_2 using a derivative of positive chlorine (Eq. (50)). This reaction reveals an interesting aspect. The first step is the addition of Cl(I) followed by $[OCF_3]^-$ or F^- . The intermediate $CF_3I(CI)F_2Y$ (Y = OCF_3 or F) contains a negatively polarised chlorine bonded at I(V). Generally, Cl⁻ acts as reducing agent for I(V). In this case the consecutive reaction of $CI^{\delta-}$ with $^{\delta+}CIOCF_3$ must be faster than the internal redox reaction and ends with CF_3IF_4 [76]

$$CF_{3}IF_{2} + 2CIOCF_{3} \xrightarrow[-30^{\circ}C]{} CF_{3}IF_{4} + Cl_{2} + 2C(O)F_{2}$$
(50)

XeF₂ in the presence of medium to strong Lewis acids takes over the oxidiser property of $[FXe]^+$. Thus, reactions with $C_6F_5IF_2$ and C_6F_5I show two reaction channels: (a) fluorine addition to I(III) or I(I) and (b) across the C=C double bond (Eqs. (51a) and (51b)) [77]

$$\begin{array}{c} C_{6}F_{5}IF_{2}+5XeF_{2}^{CF_{3}CH_{2}CF_{2}CH_{3}CP^{\circ}C[BF_{3}]}1,4\text{-}C_{6}F_{7}IF_{4}+C_{6}F_{9}IF_{4}\\ +\ldots\end{array} \tag{51a}$$

$$C_6F_5I + 4XeF_2 \xrightarrow{aHF,20\,^{\circ}C\,[NbF_5]} C_6F_9IF_4 + \dots \tag{51b}$$

In the acid-catalysed fluorine addition, the C=C double bond, at which iodine(I or III) is attached, is strongly polarised and undergoes no fluorine addition. This makes the procedure also suitable for the preparation of alk-1-en-1-yl-iodine tetrafluorides, exemplified for *cis*- and *trans*-(CF₃)₂CFCF=CFIF₄ [77]. Even per-fluoroalkyl iodides can be fluorinated to alkyliodine tetrafluorides using the combination XeF₂/Lewis acid [77].

Preferable reactions to synthesise $C_6F_5IF_4$ are based on the nucleophilic substitution of one fluorine in IF_5 by C_6F_5 . Efficient aryl transfer reagents are $C_6F_5SiF_3$ (Eq. (52a)) [78], $[NMe_4][C_6F_5SiF_4]$ (Eq. (52b)) [79], and $Bi(R_F)_3$ (Eq. (53)) [80]

$$IF_5 + C_6F_5SIF_3 \xrightarrow{\text{MeCN}, 82 \text{ °C}} C_6F_5IF_4 + SIF_4$$
(52a)

$$IF_5 + [NMe_4][C_6F_5SIF_4] \stackrel{CH_2C_{2,\leq 20} \circ C}{\longrightarrow} C_6F_5IF_4 + [NMe_4][SIF_5]$$
(52b)

$$3IF_{5} + Bi(R_{F})_{3} \xrightarrow{MeCN, 82 \,^{\circ}C} 3R_{F}IF_{4} + BiF_{3} \downarrow$$
(53)

Besides $C_6F_5IF_4$ [78,80,82], 2,6- $C_6H_3F_2IF_4$ [81] 2,3,5,6- $C_5F_4NIF_4$ [75], and CF_3IF_4 [82] were obtained using $Bi(R_F)_3$ reagents.

The $[C_6F_5SiF_4]^-$ anion is a good source of the C_6F_5 nucleophile. IF₅ reacted fast with $[NMe_4][C_6F_5SiF_4]$ in CH_2Cl_2 and formed $C_6F_5IF_4$ besides $[SiF_5]^-$ (Eq. (52b)). An alternative route, the electrophilic attack of $[IF_4]^+$ on C_6F_5H or 1,3,5- $C_6H_3F_3$, is given in the following equation [83]

$$Ar_{F}-H + [IF_{4}][SbF_{6-n}Cl_{n}]^{aHF,SO_{2}CIF \text{ or } IF_{5}}ArFIF_{4} + \langle H[SbF_{6-n}Cl_{n}] \rangle$$
(54)

where $Ar_F = C_6F_5$, 1,3,5- $C_6F_3H_3$.

2.2.2. Per- and polyfluoroorganoiodonium(V) salts $[R_F(R')IF_2]Y$

[R_FR'IF₂]Y salts with one or two C₆F₅ groups are the result of actual research. Starting from C₆F₅IF₄ one fluorine of the 5c-8e hypervalent IF₄ group can be substituted by an aryl group Ar (Ar = C₆F₅, FC₆H₄) (Eq. (55)) [26]. (Eq. (55)) demonstrates how widely applicable reagents fluoroorganodifluoroboranes are in polyvalent halogen chemistry for the introduction of fluoroorgano groups

$$C_6F_5IF_4 + ArBF_2 \stackrel{CH_2Cl_2.20\,^{\circ}C}{\longrightarrow} [C_6F_5(Ar)IF_2][BF_4]$$
(55)

where $Ar = C_6F_5$, 2-FC₆H₄, 3-FC₆H₄, 4-FC₆H₄.

2.3. Perfluoroorganobromine(III) compounds

2.3.1. Perfluoroorganobromine(III) molecules, R_FBrF₂

Only three publications deal with the synthesis of perfluoroarylbromine(III) molecules. $C_6F_5BrF_2$ was claimed as a product of the addition of fluorine to R_FBr [84], but the published characteristic properties and spectroscopic data contradict the unambiguous characterisation given for the fluorine/ C_6F_5 substitution products on BrF_3 (Eq. (56)) [85]

$$BrF_3 + C_6F_5SiF_3 \xrightarrow{CCl_3F, -5 \circ C} C_6F_5BrF_2 + SiF_4$$
(56)

 $(C_6F_5)_2M$ reagents with a weak acidic metal centre and the effective nucleophilic C_6F_5 group are able to substitute one fluorine in BrF₃ (Eq. (57)) [86].

With an excess of $(C_6F_5)_2M$ reagents it was not possible to introduce a second C_6F_5 group and to form neither $(C_6F_5)_2BrF$ nor the cation $[(C_6F_5)_2Br]^+$ (Eq. (58)) [86]

$$2BrF_3 + (C_6F_5)_2 M \xrightarrow{\text{MeCN}, \leq 0^{\circ}\text{C}} 2C_6F_5BrF_2 + MF_2 \downarrow$$
(57)

where M = Zn, Cd, Hg [86]

$$2C_6F_5BrF_2$$

$$+ (C_6F_5)_2Cd \xrightarrow{\text{MeCN},\leq 0^{\circ}C} \text{neither}(C_6F_5)BrF \text{ nor } [(C_6F_5)_2Br]^+.$$
(58)

2.3.2. Perfluoroorganobromonium salts $[R_F(R')Br]Y$

Bis(pentafluorophenyl)bromonium salts, $[(C_6F_5)_2Br]Y(Y = BF_4, AsF_6, SbF_6, PF_6)$, represent the majority of bromonium compounds which contain perfluorinated organic groups bonded to Br(III). The routes elaborated for the syntheses of non-fluorinated or mono-fluorinated organobromonium salts were unsuccessful for their polyfluorinated analogues $[R_F(R')Br]Y$. For instance, the electrophilic alkylation of organyl bromides RBr with CH₃F-SbF₅ in SO₂ gave methylbromonium salts $[CH_3(R)Br][SbF_6]$ in good yields (R = alkyl, alkenyl, and aryl), but failed for R = 4-C₆BrF₄ [51]. The pentafluorophenylation of C_6F_5Br with molten $[C_6F_5Xe][AsF_6]$ resulted in $[(C_6F_5)_2Br][AsF_6]$, but in a very low yield (Eq. (59)) [40]

 $C_6F_5Br(excess)$

$$+ [C_6F_5Xe][AsF_6] \frac{^{140} \circ C}{^{melt,1 h}} [(C_6F_5)_2Br][AsF_6] + C_6F_6 + Xe^0$$
(59)

The arylation of BrF_3 with $(XC_6H_4)_4Sn$ [87] or $(XC_6H_4)_2Hg$ [88] led to the salts $[Ar_2Br][BF_4]$ in high yields, but Nesmejanov et al.

reported that $(C_6F_5)_4$ Sn and $(C_6F_5)_2$ Hg were not reactive or underwent oxidative fluorination across the C=C bond [87,88]. Few years ago, a convenient route to $[(C_6F_5)_2$ Br]Y was elaborated by Frohn et al. Pentafluorophenyl groups were introduced into BrF₃ using the corresponding organoborane or the combination cadmiumorganyl-Lewis acid (Eqs. (60) and (61)) [86]

$$BrF_{3} + (C_{6}F_{5})_{2}BF_{-78 \text{ to } 20^{\circ}\text{C},1 \text{ h}}^{CH_{2}Cl_{2}/<\text{MeCN}}[(C_{6}F_{5})_{2}Br][BF_{4}]$$

$$(60)$$

$$C_{6}F_{5}BrF_{2} + 0.5Cd(C_{6}F_{5})_{2} + BF_{3} \cdot NCMe^{CH_{2}Cl_{2}/(61)$$

The use of AsF₅·NCMe or SbF₅·NCMe instead of BF₃·NCMe (Eq. (61)) gave the corresponding hexafluoroarsenate and hexafluoroantimonate in the same yield. However, better yields of $[(C_6F_5)_2Br][AsF_6]$ and $[(C_6F_5)_2Br][SbF_6]$ were obtained by treating the tetrafluoroborate salt with AsF₅ in CH₂Cl₂ or with SbF₅ in SO₂ [86]. Effective carbon nucleophiles can be introduced into the bromine environment using the perfluoroorganodifluoroborane route, discussed above (Eq. (39d) and Scheme 1) and exemplified by (Eq. (62)) [89]

$$C_{6}F_{5}BrF_{2} + C_{3}F_{7}C \equiv CBF_{2} \xrightarrow[-40 \text{ to } 0^{\circ}C]{}^{PFP} [C_{3}F_{7}C \equiv C(C_{6}F_{5})Br][BF_{4}]$$

$$(62)$$

where $PFP = CF_3CH_2CHF_2$.

2.4. Perfluoroorganobromine(V) molecules, R_FBrF₄ and R_FBrO₂

Three perfluoroorganobromine tetrafluorides are reported in the literature resulting from fluorine addition to the corresponding monovalent perfluoroorganyl bromides, $C_6F_5BrF_4$ [90], C₃F₇BrF₄ [91], and C₇F₁₅BrF₄ [92]. The independent synthesis of C₆F₅BrF₄ by fluorine/C₆F₅ substitution (Eq. (63)) [93] showed that the preceding report [90] was erroneous. Consequently, missing of an unambiguous proof for C₃F₇BrF₄ and C₇F₁₅BrF₄ calls the reported data into question [91,92]. Winfield et al. showed that the attempted fluorine addition to bromine in C_6F_5Br with ClF_3 ended neither with $C_6F_5BrF_2$ nor $C_6F_5BrF_4$ [74]. Fluorine was only added across the C=C double bonds of the aryl group. Frohn et al. offered four procedures to introduce the C₆F₅ group into the Br(V) moiety. In Eqs. (63)-(65) and (67) BrF₅ or K[BrF₆] were used as starting materials and C₆F₅SiF₃, $(C_6F_5)_nSiMe_{4-n}$ (n = 1, 2), or M(C_6F_5)₂ (M = Zn, Cd) as reagents of different acidity [93,94]. They also showed that BrO₂F underwent fluorine/pentafluorophenyl substitution and formed C₆F₅BrO₂ (Eq. (68)) [95]

$$BrF_{5} + C_{6}F_{5}SiF_{3}\frac{C_{2}C_{2}F_{4}}{[2MeCN]} C_{6}F_{5}BrF_{4} + SiF_{4}[93]$$
(63)

$$2K[BrF_6] + C_6F_5SiF_3 \xrightarrow{MeCN,-40\,^{\circ}C} C_6F_5BrF_4 + K_2[SiF_6] + BrF_5[96]$$
(64)

$$BrF_{5} + \frac{1}{n}(C_{6}F_{5})_{n}SiMe_{4-n} \frac{CH_{2}Cl_{2},0°C}{[2MeCN]}C_{6}F_{5}BrF_{4} + \frac{1}{n}Me_{4-n}SiF_{n}[94]$$
(65)

where n = 1, 2, but

$$K[BrF_6] + C_6F_5SiMe_3 \to K[BrF_4] + C_6F_6 + Me_3SiF[96]$$
(66)

$$BrF_{5} + 0.5M(C_{6}F_{5})_{2} \xrightarrow{CH_{2}Cl_{2},0 \,^{\circ}C} C_{6}F_{5}BrF_{4} + 0.5MF_{2} \downarrow [94]$$
(67)

where M = Zn, Cd.

$$2BrO_2F + (C_6F_5)_2Cd \overset{\text{MeCN}, -25\,^\circ\text{C}}{\longrightarrow} 2C_6F_5BrO_2 + CdF_2 \downarrow [95]. \tag{68}$$

2.5. Perfluoroarylchlorine(III and V) molecules

Two references dealing with perfluoroorganochlorine(III) compound can be found in literature. The syntheses claimed for C₆F₅ClF₂ [97] and C₆F₅Cl(F)Cl(F)C₆F₅ [98] were performed as fluorine additions to C₆F₅Cl in analogy to the erroneous report on the synthesis of C₆F₅BrF₂ and C₆F₅BrF₄ (autoclave, 117 °C). There is no comprehensible proof for the two molecules.

3. Typical transformations on polyvalent perfluoroorganohalogen(III and V) compounds and important reactivities of the halogen centers

The first part of this chapter deals with transformations of the HalX₂ and HalX₄ unit in perfluoroorganohalogen(III and V) molecules and concentrates on transformations of IF₂ or IF₄, I(acyloxy)₂, and IO or IO₂ groups. The very polar I–F bond reacts with weakly Lewis acidic reagents like silanes R₃SiY according to (Eq. (69)) to the corresponding R_FIY₂ molecules

$$R_F IF_2 + 2R_3 EY \rightarrow R_F IY_2 + 2R_3 EF$$
(69)

where E = Si, R = Me, $R_F = CF_3$: Y = OMe [99]; E = Si, R = Me, $R_F = CF_3$: Y = CI [70]; E = Si, R = Me, $R_F = C_6F_5$: Y = CN [100].

The specific substitution of only one fluorine of the IF_2 triad using Me₃SiOMe for example seems not possible. But starting from the asymmetric triad Cl–I–F, the specific substitution of fluorine could be realised (Eq. (70)) [99]

$$CF_3I(Cl)F + Me_3SiOMe \rightarrow CF_3I(Cl)OMe + Me_3SiF$$
 (70)

A related transformation was used to obtain a rare example of R_FICl_2 molecules (Eq. (71)) [102]

$$CF_3I(Cl)F + Me_3SiCl \rightarrow CF_3ICl_2 + Me_3SiF$$
 (71)

Even BY₃ (Y = Cl, Br, I, OC(O)CF₃) and Me₃SiCN were claimed as reagents to obtain the corresponding molecules CF_3IY_2 and $CF_3I(CN)_2$ [70].

With boranes RBX_2 of different acidity, carbon nucleophiles could be introduced under formation of numerous iodonium(III) salts (Eq. (72)), see Section 2.1.3

$$R_F IF_2 + RBX_2 \rightarrow [R_F(R)I][BF_2X_2]$$
(72)

In addition to Si- and B-electrophiles also carbon electrophiles like $(CF_3C(O))_2O$ were applied in the acid-assisted substitution of F against a O-nucleophile, here $OC(O)CF_3$ (Eqs. (73a) and (73b)). The same strategy can be used to introduce other oxoacid anions as demonstrated in the case of ONO_2 (Eq. (74))

$$R_F IF_2 + 2(CF_3C(0))_2 O \rightarrow R_F I(OC(0)CF_3)_2 + 2CF_3C(0)F$$
(73a)

where
$$R_F = CF_3$$
 [103], C_6F_5 [11]

$$\begin{array}{l} C_6F_5BrF_2 + 2(CF_3C(O))_2O\\ & \rightarrow C_6F_5Br(OC(O)CF_3)_2 + 2CF_3C(O)F[85,104] \end{array} \tag{73b}$$

$$R_F I F_2 + 3 N_2 O_5 \rightarrow R_F I(F) ONO_2 + R_F I(ONO_2)_2 + 3 NO_2 F \tag{74}$$

where $R_F = CF_3$ [30], C_6F_5 [9].

Transformations of $I(OC(O)CF_3)_2$ groups are dominated by the substitution of one acyloxy group by an aryl group under proton assistance (electrophilic introduction of the $R_FI(OC(O)CF_3)$)

unit into benzene derivatives) (Eq. (75)), for more details see Section 2.1.3

$$\begin{split} R_{F}I(OC(O)CF_{3})_{2} + C_{6}H_{5}Me \xrightarrow{[H^{+}]} [R_{F}(C_{6}H_{4}Me)I][OC(O)CF_{3}] \\ + CF_{3}C(O)OH \end{split} \tag{75}$$

where $R_F = C_3F_7$, C_6F_{13} , C_6F_5 [55].

A related reaction for the introduction of activated benzene derivatives into the perfluoroalkyliodine(III) moiety is given in (Eq. (76)) [105]

$$C_{n}F_{2n+1}IO + 1, 4-C_{6}H_{4}(SiMe_{3})_{2} \xrightarrow{Me_{3}SiOTf} [C_{n}F_{2n+1}$$

$$(4-Me_{3}SiC_{6}H_{4})I][OTf]$$
(76)

The synthesis of hydroxy(tosyloxy)iodoperfluoroalkanes has to be mentioned (Eq. (77)), because this class of compounds makes useful reagents available [106]

$$R_{F}I(OC(O)CF_{3})_{2} + TsOH \cdot H_{2}O \rightarrow R_{F}I(OH)OTs$$
(77)

In principle R_FIX₂ and R_FIX₄ molecules can be transformed into the corresponding oxo derivatives R_FIO (C₆F₅IO [12,36,40,105]; CF₃IO [35]), R_FIOF₂ (CF₃IOF₂ [35], C₆F₅IOF₂ [107]), and R_FIO₂ (CF₃IO₂ [35], C₆F₅IO₂ [107]. In aqueous media, this conversion can be considered as an equilibrium reaction with acidic HX as coproduct. Therefore, an excess of alkaline media is necessary. Under the influence of OH⁻ the product can undergo subsequent reactions. One indicator may be the strongly differing physical data, e.g. the temperature of decomposition [36,39], solubilities [49,108,109], and IR spectroscopic data [36,40] reported for C₆F₅IO together with the spectroscopically proofed presence of $[(C_6F_5)_2I][IO_3][40]$. IO_3^- anions may be the result of the pronounced nucleofugality of the C_6F_5 group in $[C_6F_5(OH)IO]^-$ as an intermediate in the presence of OH⁻. Thus in 1 M NaOH_{aq} at 100 $^\circ$ C the C–I bond is cleaved and C_6F_5H is formed quantitatively within 3 h [40]. The formation of CF₃IO is described by (Eq. (78)). This path has strong similarity to (Eq. (69)). CF₃IO is intrinsically unstable. In contrast to C_6F_5IO its disproportion to CF_3I and CF_3IO_2 is described [35]. CF_3IO can be acylated with $(CF_3C(O))_2O$ to give $CF_3I(OC(O)CF_3)_2$ [103]

$$2CF_{3}IF_{2} + SiO_{2} \xrightarrow{\text{MECN}}_{-40\,^{\circ}\text{C}} 2CF_{3}IO + SiF_{4}$$

$$(78)$$

 $C_6F_5IOF_2$ and $C_6F_5IO_2$ can be obtained from the homogenous reaction system of $C_6F_5IF_4$ and $(Me_3Si)_2O$ in the basic solvent MeCN (Eqs. (79a) and (79b)). The presence of MeCN is essential, because it solvates the intermediate $C_6F_5IOF_2$. In polar, weakly coordinating solvents like CH_2CI_2 mixtures of products result only

$$C_6F_5IF_4 + (Me_3Si)_2O \xrightarrow{MeCN} C_6F_5IOF_2 + 2Me_3SiF$$
(79a)

Mach

$$C_6F_5IOF_2 + (Me_3Si)_2O \xrightarrow{MeCN} C_6F_5IO_2 + 2Me_3SiF \tag{79b}$$

 CF_3IOF_2 was obtained from the reaction of CF_3IF_4 and SiO_2 and showed an unexpected reactivity in the presence of Lewis acids, the elimination of CF_4 (Eq. (80)) [110]

$$CF_3IOF_2 + BF_3 \rightarrow CF_4 + [IO][BF_4]$$
(80)

In contrast to $C_6F_5IF_2$ the hydrolysis of $C_6F_5BrF_2$ in aqueous medium did not end with unsoluble C_6F_5BrO but with C_6F_5Br and O_2 . In a fast internal redox reaction O^{-II} was oxidised by Br(III) (Eq. (81)). The hydrolysis of $C_6F_5BrF_4$ differs in principle from that of $C_6F_5IF_4$ and $C_6F_5BrF_2$. Thus, hydrolysis did not result in an insoluble, polymeric dioxide, but in water-soluble $C_6F_5BrO_2$. The latter was also isolated from the reaction of $C_6F_5BrF_4$ with (Me₃)₂SiO (Eqs. (82a) and (82b)) as an explosive (<20 °C) solid which was characterised by the iodometric oxidation equivalent and by ¹⁹F and ¹³C NMR and IR spectroscopy [95]. The equimolar reaction of $C_6F_5BrF_4$ and $(Me_3Si)_2O$ in MeCN did not result in $C_6F_5BrOF_2$ (Eq. (83)) [95]. $C_6F_5BrOF_2$ was obtained from $C_6F_5BrF_4$ and $CsNO_3$ (Eq. (84)) [95]

$$2C_6F_5BrF_2 + 2H_2O \xrightarrow{MeCN} 2C_6F_5Br + O_2 + 4HF$$
(81)

$$C_6F_5BrF_4 + 2H_2O \xrightarrow{MeCN} C_6F_5BrO_2 + 4HF$$
(82a)

$$C_{6}F_{5}BrF_{4} + 2(Me_{3}Si)_{2}O \xrightarrow{MeCN} C_{6}F_{5}BrO_{2} + 4Me_{3}SiF$$
(82b)

 $2C_6F_5BrF_4$

$$+ 2(\text{Me}_3\text{Si})_2\text{O} \xrightarrow{\text{MeCN}} C_6F_5\text{Br}F_4 + C_6F_5\text{Br}O_2 + 4\text{Me}_3\text{SiF}$$
(83)

$$C_{6}F_{5}BrF_{4} + CsNO_{3} \xrightarrow{MeCN} C_{6}F_{5}BrOF_{2} + NO_{2}F + CsF$$
(84)

Double bonded oxygen in R_FIO could be substituted by two oxoacid anions (Eqs. (85a)–(85c)) in reactions with oxoacid anhydrides ((CF₃C(O))₂O [103], N₂O₅ [9,30], Cl₂O [14]) or by two fluorine atoms with SF₄ (Eq. (86a)) [12,111]. Substitution of oxygen by fluorine with SF₄ is also possible starting with $R_FI(OC(O)CF_3)_2$ directly (Eq. (86b)) [12,111]

$$R_{F}IO + (CF_{3}C(O))_{2}O \to R_{F}I(OC(O)CF_{3})_{2}$$
(85a)

where $R_F = CF_3$.

$$R_F IO + N_2 O_5 \rightarrow R_F I (ONO_2)_2 \tag{85b}$$

$$R_F IO + Cl_2 O \rightarrow R_F I(OCl)_2 \tag{85c}$$

$$R_F IO + \geq 1SF_4 \rightarrow R_F IF_2 + SOF_2 \tag{86a}$$

where
$$R_F = C_3 F_7$$
, $C_6 F_5$.

$$R_F I(OC(O)CF_3)_2 + \geq 2SF_4 \rightarrow R_F IF_2 + 2SOF_2 + 2CF_3C(O)F \eqno(86b)$$

where $R_F = C_3 F_7$.

The Hal(III and V)F_n groups in C₆F₅HalF_n (n = 2, 4) are amphoteric. Until now, their Lewis acidic properties were predominantly investigated. Thus, 1:1 adducts of C₆F₅IF₂ and bidentate (2,2'-bipyridyl, 1,10-phenathroline) and monodentate (quinoline) N-bases were isolated and structurally characterised (Eq. (87a)) [101]. C₆F₅BrF₄ forms a 1:1 adduct with pyridine (Eq. (88)) which is more stable than BrF₅·py and decomposes only at 124.5 °C [96]. The hard fluoride base (CsF in MeCN at 0 °C) initiates elimination of C₆F₆ (Eq. (89)). This interaction is accompanied by reduction of Br(V) under [BrF₄]⁻ formation [96]

$$C_6F_5IF_2 + N\text{-base} \rightarrow C_6F_5IF_2 \cdot N\text{-base}$$
(87a)

where N-base = 2,2'-bipyridyl, 1,10-phenathroline, quinoline.

$$CF_3IF_2 + N\text{-base} \rightarrow CF_3IF_2 \cdot N\text{-base}$$
(87b)

where N-base = MeCN, py, quinoline [112].

$$C_6F_5BrF_4 + py \rightarrow C_6F_5BrF_4 \cdot py \tag{88}$$

$$C_6F_5BrF_4 + CsF \xrightarrow{MeCN,0^{\circ}C} C_6F_6 + Cs[BrF_4]$$
(89)

Only little is known about organo(fluoro)halonium salts. Perfluoroalkyliodine difluorides react with BF₃ in CH₂Cl₂ at -60 °C and form a precipitate of unknown composition [47]. Perfluoroorganyliodine tetrafluorides R_FIF₄ (R_F = C₆F₁₃, (CF₃)₂CFCF = CF, *cyclo*-C₆F₉, C₆F₅) resist to Lewis acids like aHF, NbF₅ in aHF, and BF₃ in PFB (20–22 °C) for some hours [77], but perfluoroalkyliodine tetrafluorides react with AsF₅ (–78 °C) [71] and perfluoroalkyliodine oxydifluorides with BF₃ (–78 °C), AsF₅ (-20 °C) or SbF₅ (0 °C) [110]. These reactions are accompanied by the decomposition of the polyvalent iodo compounds under formation of the corresponding perfluoroalkanes. Fluoride abstraction from C₆F₅IF₄ with SbF₅ in SO₂FCl at low temperatures and formation of [C₆F₅IF₃]⁺ was proved by ¹⁹F NMR spectroscopy [83]. Higher stability is found when two aryl groups are present in the arylfluoroiodonium(V) cation. The synthesis and structure [25,113] of [(C₆F₅)(Ar)IF₂][BF₄] is discussed in Sections 2.2.2 and 6.

A few examples of chemical transformations of perfluoroorganyl groups bonded to Hal centres were reported, e.g. the electrophilic oxygenation [114] and fluorine addition [77] to the C_6F_5 group in $C_6F_5IF_n$ (n = 0, 2, 4) (Eqs. (90a) and (90b))

$$C_{6}F_{5}IF_{4} + XeF_{2} + H_{2}O\frac{^{HF, 12} \circ ^{C}}{-Xe}$$

$$cyclo-3-O-C_{6}F_{5}IF_{4}(main product)$$
(90a)

$$C_{6}F_{5}IF_{4} + XeF_{2} \xrightarrow[-Xe]{HF,[NbF_{5}] 20 \,^{\circ}C} cyclo-C_{6}F_{9}IF_{4} \tag{90b}$$

Perfluoroorganohalogen fluorides are interesting fluorinating agents (Eq. (91) [93], Eqs. (92a) and (92b)) [10] which have certain advantages over halogen fluorides itself taking into consideration the inertness of the by-product, R_FHal, relative to Hal₂ formed from halogen fluorides

$$2R_{3}P + C_{6}F_{5}BrF_{4} \rightarrow 2R_{3}PF_{2} + C_{6}F_{5}Br$$
(91)

$$C_{6}F_{5}I + 2C_{6}F_{5}BrF_{2} \xrightarrow{MeCN} C_{6}F_{5}IF_{2} + C_{6}F_{5}Br + < 1C_{6}F_{5}IF_{4} \tag{92a}$$

$$2C_{6}F_{5}I + C_{6}F_{5}BrF_{4} \underset{MeCN,-30^{\circ}C}{\overset{[BF_{3}.MeCN]}{\longrightarrow}} 2C_{6}F_{5}IF_{2} + C_{6}F_{5}Br \tag{92b}$$

The slow addition of fluorine across the C—C double bond of hexafluoropropene with CF_3IF_4 (Eq. (93)) was reported [71]

$$CF_{3}IF_{4} + CF_{3}CF = CF_{2} \xrightarrow[20^{\circ}C,2d]{} (CF_{3})_{2}CFI + \dots$$
(93)

The cation, $[(C_6F_5)_2IF_2]^+$, is a significant stronger oxidiser and fluorinating agent than the molecules, $C_6F_5IF_4$ or IF_5 . Thus, $[(C_6F_5)_2IF_2]^+$ affords fluorination of very weak reducing molecules like $(C_6F_5)_3Bi$ (Eq. (94)). Partially positively charged iodine in C_6F_5I was fluorinated, even in the presence of the basic solvent MeCN, which principally reduces the oxidation potential by coordination and charge transfer (Eq. (95)) [26]

$$[(C_6F_5)_2IF_2][BF_4] + (C_6F_5)_3E \xrightarrow{MeCN} [(C_6F_5)_2I][BF_4] + (C_6F_5)_3EF_2$$
(94)

where E = P, As, Sb, Bi

$$[(C_6F_5)_2IF_2][BF_4] + C_6F_5I \xrightarrow{MeCN} [(C_6F_5)_2I][BF_4] + C_6F_5IF_2.$$
(95)

4. Polyvalent perfluoroorganoiodine compounds: applications and reagents in synthetic chemistry

Because of their electrophilic character, neutral R_FIX_n (n = 2, 4) and cationic $[R_F(R')I]^+$ are predestined for the electrophilic transfer of perfluoroorganyl groups on nucleophiles. Especially the perfluoroalkylation of different kinds of nucleophiles was developed by Yagupol'skii and intensively investigated by Umemoto. Only few examples of different kinds of nucleophiles demonstrate the potential of perfluoroalkyl(phenyl)iodonium cations. The favoured formation of iodobenzene as a nucleofuge is a typical pattern of these perfluoroalkylation reactions (Eqs. (96)–(101)) [115–119]

$$[C_6F_{13}(C_6H_5)I][BF_4] + Me_2S \xrightarrow[-C_6H_5I]{} [C_6F_{13}SMe_2][BF_4] [115]$$
(96)

$$\begin{split} & [C_6F_{13}(C_6H_5)I][BF_4] + 1, 2\text{-}(RO)_2C_6H_4 \xrightarrow[-C_6H_5]{} 4\text{-}C_6F_{13}\text{-}1, 2 \\ & -(RO)_2C_6H_3\ [116] \end{split} \tag{97}$$

$$\begin{split} & [C_6F_{13}(C_6H_5)l][BF_4] \\ & + (Me_2N)_3P \mathop{\longrightarrow}_{-C_6H_5l} [C_6F_{13}P(NMe_2)_3][BF_4] \, [115] \end{split} \tag{98}$$

$$\begin{split} & [CF_3CH_2(C_6H_5)I][N(S(O)_2CF_3)_2 \\ & + \text{N-base} \underset{-C_6H_5I}{\longrightarrow} CF_3CH_2\text{-N-alkylation} [117] \end{split} \tag{99}$$

where N-base = imidazole and pyridine derivatives

$$[C_{3}F_{7}(C_{6}H_{5})I]X + Me_{3}SnR \xrightarrow[-C_{6}H_{5}I]{-C_{6}H_{5}I} C_{3}F_{7}R + C_{6}H_{5}I$$

$$+ Me_{3}SnX [118]$$
(100)

where R = Ph, CH—CHPh, C=CPh

$$\begin{split} & [C_n F_{2n+1}(C_6 H_5)I][OTf] + RMgX \underset{-C_6 H_5 I}{\longrightarrow} C_n F_{2n+1}R \\ & + Mg(X, OTf)_2 [119] \end{split} \tag{101}$$

An interesting example of polyfluoroalkylation is the trifluoroethyl-S-alkylation of cysteine in water [120] (Eq. (102)) reported by DesMarteau et al.

$$\begin{split} & [CF_3CH_2(C_6H_5)I][N(S(O)_2CF_3)_2] \\ & + HS-CH_2CH(NH_2)CO_2H \xrightarrow{H_2O} CF_3CH_2S-CH_2CH(NH_2)CO_2H \end{split}$$

Recently, Togni et al. showed that 1-trifluoromethyl-1,3-dihydro-1,2-benziodoxoles [121], which can formally be regarded as internal perfluoroalkyl(aryl)iodonium salts, possess a remarkable potential as a mild electrophilic trifluoromethylation agent for carbon- and sulphur-centred nucleophiles [122].

Carbon nucleophiles can be coupled with $R_{\rm F} I F_2$ as demonstrated in (Eq. (103))

$$R_{F}IF_{2} + 2Me_{3}SiC \equiv CPh \rightarrow R_{F}I + PhC \equiv C - C \equiv CPh + 2Me_{3}SiF[123]$$
(103)

Gladysz et al. reported the application of long-chain $R_{\rm Fl}(O-C(O)CF_3)_2$ molecules for oxidation reactions on 1,4-hydroquinones in fluorous phase systems [124]. Rondesvedt described the application of perfluoroalkyliodine difluorides for the telomerisation of perfluoroalkyl iodides with tetrafluoroethylene (Eq. (104)) [23,24]

$$a C_6 F_{13} I F_2 + b C_3 F_7 I + c C F_2 = C F_2 \xrightarrow{78^\circ C.8.4 \text{ bar}} F(C F_2)_n I$$
(104)

where n = odd from 3 to 19.

Actually, a promising application of polyfluorinated alkyl(aryl)iodonium salts with the weakly nucleophilic $[N(S(O)_2CF_3)_2]^$ anion was developed by Montanari and Kumar [125–127]. During the solid phase peptide synthesis the electrophilic iodonium cation acts as an N-capping reagent for deletion products. This procedure allows an easy separation of the desired peptide from its deletion products.

5. NMR spectroscopic characteristics of polyvalent perfluoroorganoiodine and bromine(III and V) compounds

¹³C and in particular ¹⁹F NMR spectroscopy are key tools for the characterisation of polyvalent per- and polyfluoroorganylhalogen compounds in solution. We present only important NMR spectroscopic properties of perfluoroorganylbromine(III, V) and perfluoro-

organyliodine(III, V) compounds and their distinctions from their parent compounds, perfluoroorganyl bromides and iodides. For convenience, typical ¹³C and ¹⁹F NMR spectral data of selected perfluoroorganyl-bromine(III, V) and -iodine(III, V) derivatives were compiled in Table 1.

Solutions of R_FHalF₂ in weakly coordinating solvents (CCl₄, CCl₃F, CH₂Cl₂, PFB, or PFP) are characterised by ¹⁹F shift values of their HalF₂ triad at -155 to -178 ppm (IF₂) and at -45 to -60 ppm (Br F_2). The related Hal F_4 fluorine resonances in R_FHal F_4 occur significantly deshielded, located at -5 to -30 ppm (IF₄) and at 70-92 ppm (Br F_4 ; R_F = aryl). In basic solvents (CH₃CN, Py, ether, THF) the Hal F_n resonances shift by 1–5 ppm to lower frequencies, which reflects the donor-acceptor interaction of R_FHalF_n with the solvent. The IF₄ resonance in R_FIF_4 usually presents a multiplet with ³*I*(IF₄,F) and ${}^{4}J(IF_{4},F)$ couplings depending mainly on the nature of R_F and varying in magnitude of 2–17 and 15–40 Hz, respectively [10,77,80,129]. The BrF₄ resonance in $C_6F_5BrF_4$ has a triplet structure with ${}^4J(BrF_4,F^{2,6}) = 29$ Hz [93]. The ${}^{19}F$ signals of IF₂ and Br F_2 in C₆ F_n H_{5-n}Hal F_2 are reported as unresolved singlets. Similarly, no J(IF₂,F) couplings were detected in the spectra of perfluoroalkenyliodine difluorides (CF₃)₂CFCF=CFIF₂ (cis and trans) [5] and 1-IF₂-cyclo-C₆F₇-1,4 [8]. The spectra of polyfluoroalkyliodine difluorides, $C_n F_{2n+1}(CH_2)_m IF_2$ (*m* = 0, 1), display splitted IF_2 signals with ${}^{3}I(IF_2,H) = 8-12$ Hz and ${}^{4}I(IF_2,F) = 5$ Hz [18]. Thus, the ${}^{3}J(IF_{2},H)$ coupling is of the same magnitude as the ${}^{3}J(IF_{2},F)$ coupling in comparable molecules. The ¹⁹F NMR spectrum of $(CF_3)_2$ IF (complex reaction mixture) is reported as a doublet at -26.1 ppm (2 CF₃) and a septet at -131.5 ppm (IF) with ${}^{3}J(F,F) = 6 \text{ Hz} (CH_{2}Cl_{2}, -33 \,^{\circ}C) [44]$. The IF resonance in isolated $(C_6F_5)_2$ IF appears significantly more deshielded (~120 ppm) at -11.7 ppm (CH₂Cl₂, 35 °C) and both C₆F₅ groups are chemically equivalent with resonances at -124.2 (F^{2,6}), -147.6 (F⁴), and $-158.2 \text{ ppm} (F^{3,5}).$

Table 1

NMR spectral da	ita of selected	perfluoroorganohalogen(I	II and V) compounds ⁴
			· · ·

The 19 F NMR spectra of perfluoroorgano groups R_F bonded to
Br(III and V) or I(III and V) differ from that of their parent compounds
R _F Br and R _F I, respectively (Table 1). In the series of perfluoroalk-
yliodine fluorides, $C_n F_{2n+1} C F_2 I F_m$, the increase of <i>m</i> from 0 to 2 and 4
causes a strong shielding of the CF ₂ I fluorine atoms. The maximal
effect was found for the trifluoromethyl derivatives, CF_3IF_m , with
shieldings [130] of $\Delta\delta(F^1)$ –27 (<i>m</i> = 2) and –50 ppm (<i>m</i> = 4) [129],
respectively. This effect diminishes with elongation of the per-
fluoroalkyl chain (n = 1, 2, 3 [6], 6 (Table 1) to $\Delta\delta(F^1)$ = -16 ppm
$(n = 6, m = 2)$ and $\Delta\delta(F^1) = -22$ ppm $(n = 5, m = 4)$. A similar
shielding effect was observed in the spectra of perfluoroalkenylio-
dine fluorides, <i>trans</i> -(CF ₃) ₂ CFCF=CFIF _m : $\Delta\delta(F^1) = -14 \text{ ppm} (m = 2)$
and $\Delta\delta(F^1) = -20$ ppm (<i>m</i> = 4). The <i>ortho</i> -fluorine atoms $F^{2,6}$ in the
C_6F_5 group which are one bond more separated from the IF_m
substituent in $C_6F_5IF_m$ than F^1 in the corresponding alkyl or alkenyl
derivatives show smaller low frequency shifts: $\Delta\delta(F^{2,0}) = -2$ ppm
$(m = 2)$ and $\Delta\delta(F^{2,0}) = -10$ ppm $(m = 4)$. In the series of C ₆ F ₅ BrF _m
molecules the effect of m is negligible. Additionally, the para-
fluorine atom in all $C_6F_5HalF_m$ compounds (Hal = Br, I) are
deshielded by 10–12 ppm with respect to the parent molecule,
C ₆ F ₅ Hal.

The ¹⁹F NMR spectra of the halonium salts, $[R_FR'(Hal)]Y$, display a remarkable dependence on the nature of both the solvent and the counteranion, Y⁻, because of the electrophilic character of their cations. Solutions of their salts in aHF (superacid) are characterised by "rarely-solvated" cations and solvated (protonated) anions. As an approximation, halonium salt solutions in aHF can be treated as such of nearly "naked" di(organyl)halonium cations and a separated, solvated anion, whereas in good coordinating basic solvents (MeCN, ether, THF) strongly coordinated halonium cations are separated from less solvated anions. In weakly coordinating solvents (PFP, CH₂Cl₂, CDCl₃), as far as solubility is observed, ion pairing is possible. Thus, when superacidic aHF was

Compound	Solvent	$\delta(^{19}\text{F}) \text{ (ppm)}$	$\delta(^{13}C) (ppm)$	Reference
C ₆ F ₅ Br	CD_2Cl_2	-132.7 (2F, F ^{2,6}), -154.9 (1F, F ⁴), -160.9 (2F, F ^{3,5})	96.8 (C ¹), 147.5 (C ^{2,6}), 140.3 (C ^{3,5}), 143.1 (C ⁴)	[94]
C ₆ F ₅ BrF ₂	CCl₃F	-133.2 (2F, F ^{2,6}), -144.0 (1F, F ⁴), -156.8 (2F, F ^{3,5}), -44.5 (2F, BrF ₂)	119.4 (C ¹), 143.8 (C ^{2,6}), 139.1 (C ^{3,5}), 146.5 (C ⁴) ^b	[85]
C ₆ F ₅ BrF ₄	CD_2Cl_2	-133.3 (2F, F ^{2,6}), -142.6 (1F, F ⁴), -157.3 (2F, F ^{3,5}), 92.0 (4F, BrF ₄)	151.9 (C ¹), 143.3 (C ^{2,6}), 139.6 (C ^{3,5}), 146.5 (C ⁴)	[94]
$[(C_6F_5)_2Br][BF_4]$	CD_3CN	-129.3 (2F, F ^{2,6}), -139.6 (1F, F ⁴), -155.2 (2F, F ^{3,5})	102.6 (C ¹), 146.1 (C ^{2,6}), 139.5 (C ^{3,5}), 147.7 (C ⁴)	[86]
C ₆ F ₁₃ I	CCl₃F	-59.6 (2F, F ¹), -81.4 (3F, F ⁶), -113.6 (2F, F ²), -122.1 (2F, F ³), -123.5 (2F, F ⁴), -127.1 (2F, F ⁵)	93.6 (C ¹), 109.5 (C ²), 108.5 (C ³), 118.4 (C ⁴) ^c	[5]
C ₆ F ₁₃ IF ₂	CH_2Cl_2	-75.6 (2F, F ¹), -81.2 (3F, F ⁶), -116.9 (2F, F ²), -121.6 (2F, F ³),		[5]
		-122.8 (2F, F ⁴), -126.4 (2F, F ⁵), -171.6 (2F, IF ₂)		
$C_6F_{13}IF_4$	PFB	-82.0 (2F, F ¹), -81.4 (3F, F ⁶), -119.5 (2F, F ²), -121.2 (2F) and		[77]
		-122.4 (2F) (F ³ and F ⁴), -126.2 (2F, F ⁵), -27.7 (4F, IF ₄)		
$(CF_3)_2 CFCF \longrightarrow CFIF_2$	CH_2Cl_2	trans: $-75.5 (2CF_3)$, $-122.8 (1F, F^1)$, $-136.1 (1F, F^2)$, $-188.4 (1F, F^3)$,		[5]
		$-165.3 (2F, IF_2); cis: -75.1 (2CF_3), -102.0 (1F, F^1), -131.4 (1F, F^2),$		
		$-180.8 (1F, F^3), -156.7 (2F, IF_2)$		
$(CF_3)_2 CFCF \longrightarrow CFIF_4$	CH_2Cl_2	trans: $-75.5 (2CF_3)$, $-129.7 (1F, F^1)$, $-145.0 (1F, F^2)$, $-187.3 (1F, F^3)$,		[77]
		$-19.7 (4F, IF_4); cis: -74.6 (2CF_3), -109.3 (1F, F^1), -134.9 (1F, F^2),$		
		-184.3 (1F, F ³), -12.3 (4F, IF ₄)		
C ₆ F ₅ I	CDCl ₃	$-120.1 (2F, F^{2,0}), -153.1 (1F, F^{4}), -160.3 (2F, F^{3,5})$	$66.1 (C^{-}), 147.0 (C^{2,0}), 136.9 (C^{3,0}), 141.4 (C^{4})$	[10]
C ₆ F ₅ IF ₂	CD_2Cl_2	-122.1 (2F, F ^{2,5}), -143.6 (1F, F ⁴), -156.9 (2F, F ^{3,5}), -158.6 (2F, IF ₂)	103.7 (C ¹), 145.4 (C ^{2,5}), 137.9 (C ^{3,5}), 146.3 (C ⁴)	[10]
$C_6F_5IF_4$	CD ₂ Cl ₂	$-130.1 (2F, F^{2,0}), -143.3 (1F, F^{2}), -158.3 (2F, F^{2,0}), -9.0 (4F, IF_4)$	$132.3 (C^{2}), 145.6 (C^{2,0}), 138.7 (C^{3,0}), 145.4 (C^{4})$	[80]
$[(C_6F_{13})I(C_6H_5)]OII$	CDCI ₃	-70.5 (2F, F'), -81.3 (3F, F'), -114.2 (2F, F'), -121.7 (2F, F'),		[56]
	CU CN	$-123.0 (2F, F^{+}), -126.5 (2F, F^{-})$ 77.2 (1F, F ² trans) - 05.7 (1F, F ² trin) - 157.0 (1F, F ¹)	$102.2(c_1^2)$ $150.2(c_2^2)$ $85.8(c_1^2)$ $147.2(c_2^{2.6})$	[21]
$[(CF_2 = CF)I(C_6F_5)][BF_4]$	CH ₃ CN	-77.2 (IF, F <i>ltans</i>), -95.7 (IF, F <i>cts</i>), -157.0 (IF, F), 120.5 (25. $r^{2.6}$), 140.0 (15. r^{4}), 155.2 (25. $r^{3.5}$) ^d	103.2 (C), 150.3 (C), 85.8 (C), 147.3 (C), 128.5 ($c^{3.5}$), 147.4 (c^{4}) de	[21]
[(C-E-)](C-H-)][PE-]	CD-CN	$-120.5 (2\Gamma, \Gamma^{-1}), -140.9 (1\Gamma, \Gamma), -155.5 (2\Gamma, \Gamma^{-1})$ 121.1 (2E $E^{2.6}$) 142.6 (1E E^4) 155.0 (2E $E^{3.5}$)	150.5 (C ⁻¹), 147.4 (C ⁻¹), 97.1 (C^{1}) 147.5 ($C^{2,6}$) 129.9 ($C^{3,5}$) 146.9 (C^{4}) d	[65]
[(C6F5)](C6F15)][DF4]	CD3CN	$-121.1(2\Gamma, \Gamma), -142.0(1\Gamma, \Gamma), -135.5(2\Gamma, \Gamma)$	(C^{1}) 133.8 ($C^{2,6}$) 137.3 ($C^{3,5}$) 134.8 (C^{4})	[05]
[(CcEc)al][BEc]	$CD_{2}CN$	$-1204(2F F^{2,6}) -1414(1F F^{4}) -1557(2F F^{3,5})$	$884(C^1)$ 147 7 ($C^{2,6}$) 138 9 ($C^{3,5}$) 147 5 (C^4)	[65]
$[(C_{c}F_{c})_{2}][BF_{4}]$	CD ₂ CN	$-1254 (2F F^{2.6}) -1364 (1F F^4) -1537 (2F F^{3.5}) -581 (2F IF)$	$112.6 (C^1) 146.7 (C^{2,6}) 139.8 (C^{3,5}) 148.6 (C^4)$	[26]
1(-0-3)2-21[2-4]	2030.1			[20]

^a Signals of counteranions were not presented. Numeration of F and C atoms starts from the Hal(III and V) position; F¹ is attached at C¹.

^b In CD₃CN [104].

^c ¹³C NMR of C₄F₉I [128].

^d F and C atoms marked in italics belong to the C_6F_5 group.

e In CD₃NO₂.

replaced by basic MeCN all signals of the pentafluorophenyl group of both [(C_6F_5)_2Br][BF₄] and [(C_6F_5)_2I][BF₄] were shifted to lower frequencies by 2–5 ppm. A similar shift tendency was observed in the spectra of the iodonium salts [($CF_3C\equiv C$)(C_6F_5)I][BF₄] (replacement of aHF by PFP) [18] or [(C_6F_5)_2I][OTf] (replacement of CH₂Cl₂ by H₂O or MeCN) [58]. The influence of the counteranion on ¹⁹F NMR shifts of iodonium salts was well demonstrated by Umemoto et al. in the series of [(C_8F_{17})(C_6H_5)I]Y salts: the ¹⁹F resonance of the α -difluoromethylene group moved from -68 to -74, -78, and -86 ppm when Y = OS(O)₂CF₃ was substituted by OS(O)₂OH, OS(O)₂CH₃, and Cl, respectively. It is in good agreement with the order of nucleofugality of Y⁻ and reflects the decreasing partial positive charge on iodine with increasing polarisability of the anion, Y⁻ [56].

The ¹³C NMR resonances of the molecules, R_FHalF_m , and of the halonium salts, $[R'(R_F)Hal]Y$, show significantly deshielding of the carbon atoms relative to these in the parent compounds, R_FHal . Thus, the $\delta(C^1)$ shifts in CF₃CH₂I and CF₃CH₂IF₂ are -5.0 and 46.2 ppm, respectively [18]. The ¹³C signals of CF₃IF_m are located at 79.5 (m = 0), 106.7 (m = 2), and 131.2 (m = 4) ppm (solutions in MeCN at 21, -20, and -30 °C, respectively) [129]. In the series of pentafluorophenyl derivatives the deshielding $\Delta\delta(C^1)$ is 23 and 55 ppm (Hal = Br), 38 and 66 ppm (Hal = I) for m = 2 and 4, respectively. The deshielding of C⁴ is small (3–5 ppm), and $\Delta\delta(C^{2.6})$ and $\Delta\delta(C^{3.5})$ do not exceed 2 ppm (Table 1). Unfortunately, the ¹³C NMR spectra of the majority of other perfluoroorganyliodine compounds, R_FIX_m ($R_F = C_nF_{2n+1}$, R''CF = CF, $R''C \equiv C$; $R'' \neq F$), were not reported.

In iodonium salts, $[R_F(R')I]Y$, ¹³C resonances display less deshielding relative to the related R_FIF_m molecules. Thus, the deshielding $\Delta\delta(C^1)$ in $[(C_6F_5)_2Hal][BF_4]$ are only 6 (Hal = Br) and 22 (Hal = I) ppm (Table 1). Asymmetric pentafluorophenyliodonium salts, $[C_6F_5(R')I][BF_4]$, [65] show similar values of $\Delta\delta(C^1) = 20-22$ ppm, practically independent of the nature of the second ligand R' (Table 1). The resonances of C¹ and C² of perfluoroalkynylio-

donium salts [(R_FC=C)(R')I][BF₄] (R_F = CF₃, (CF₃)₂CF) are located at 20–30 ppm and 92–101 ppm, respectively (cf. δ (C¹) = 13.8 and δ (C²) = 81.4 ppm in CF₃C=CI) [18]. The influence of the substituent R_F on δ (C¹) and δ (C²) in the alkynyliodonium cation of [(F₃CC=C)(CF₃CH₂)I][BF₄] (δ (C) = 20 (C=C-I) and 95 (C=C-I) ppm [18]) is well demonstrated by a comparison with the non-fluorinated alkynyliodonium salt [(CH₃)₃CC=C)(CF₃CH₂)I][OTf] (δ (¹³C) = -8.3 (C=C-I) pnm [61]).

6. Structural characteristics of polyvalent perfluoroorganoiodine(III and V) compounds

The molecular structure of polyvalent compounds of iodine and bromine(III and V) can be predicted by means of the VSEPR concept. Thus, RHalX₂ molecule have T-shape and RHalX₄ a square pyramidal shape, whereas their related cations [R₂Hal]⁺ and $[R_2HalX_2]^+$ show a bent and a sawhorse geometry, respectively. For the two types of molecules and cations examples of crystal structures are known in case of iodine. In this chapter only trends observed for prototypes of perfluoroalkyl and perfluoroaryl derivatives are presented. Structural data for some polyfluoroalkvliodine(III) compounds are reported by Pennington and coworkers [131]. Besides molecular parameters we discuss also intermolecular interactions. With a CF₃ group attached to Hal(III and V) only structures of CF_3IX_n molecules, namely CF_3IF_2 [27], CF₃ICl₂ [102], CF₃I(OMe)₂ [99], CF₃I(OC(0)CF₃)₂ [132], CF₃I(ONO₂)₂ [133], CF₃I(Cl)OMe [99], and CF₃IF₄ [76] are known up to now (Table 2). More different types are known with a C_6F_5 group bonded to Hal(III and V). Besides the molecules C₆F₅IF₂ [10], C₆F₅IF₄ [80], C₆F₅I(OC(O)CF₃)₂ [134], and C₆F₅I(OC(O)C₆F₅)₂ [135] (Table 2) salts with the cations $[(C_6F_5)_2I]^+$ [65] and $[(C_6F_5)_2IF_2]^+$ [26,113] were structurally characterised as well as bromonium salts with the related $[(C_6F_5)_2Br]^+$ cation [86] (Table 3). In case of CF_3IX_2 molecules, CF₃IF₂ shows the shortest average C-I distance and CF_3ICl_2 the longest. All $CF_3I(OY)_2$ molecules (Y = Me, C(O)CF₃, NO₂)

Table 2

Characteristic structural features of R_FIX_2 and R_FIX_4 molecules

$R_{\rm F}IX_n \ (n=2,\ 4)$	D(I–C) (Å) ^a	D(I-X) (Å)	D(I-X') (Å)	∠(C-I-X) (°)	∠(C-I-X′)(°)	\angle (X–I–X) (°) or \angle (X–I–X') (°)	Shortest intermolecular contact (I–X) or (I–X') (Å)	Reference
CF ₃ IF ₂	2.174(6)	1.982(2)	-	82.71(9)	-	165.4(2)	2.950	[27]
CF ₃ ICl ₂	2.229(10)	2.457(2)-2.478(2)	-	82.9(3)-88.7(3)	-	171.62(9)	3.324(3)	[102]
$CF_3I(OMe)_2$	2.190(12)	2.019(11)-2.087(11)	-	81.4(5)	-	166.7(4)	2.749(9)	[99]
CF ₃ I(Cl)OMe	2.207(7)-2.212(8)	1.969(5)-1.991(5) ^b	2.578(2)-	89.2(2)-89.3(3)	81.7(2)-82.0(2)	171.0(2)	3.104(2) ^c ,	[99]
			2.580(2) ^c				3.235(5) ^b	
$CF_3I(O_2CCF_3)_2$	2.209(3)	2.094(2)-2.160(2)		77.42(10)-86.52(10)		163.51(8)	2.913(2)	[126]
$CF_3I(ONO_2)_2$	2.212(4)	2.073(3)-2.208(2)	-	76.3(1)-89.2(1)	-	165.3(1)	3.160(3)	[127]
CF ₃ IF ₄	2.22(1)	1.904(6)-1.925(5)	-	80.9(3)-83.6(4)	-	87.5(2)-89.5(3)	3.079(6)	[76]
$C_6F_5IF_2$	2.068(3)-2.068(3)	1.950(3)-2.032(2)	-	83.29(12)-87.39(13)	-	170.46(10)-171.59(9)	2.742(2)	[10]
$C_6F_5I(CN)F$	2.077(3) ^d	2.110(2) ^e	2.112(4) ^f	80.95(11)	86.27(14)	167.09(12)	$2.644(2)^{g}$	[100]
$C_6F_5I(O_2CCF_3)_2$	2.063(6)-2.078(10)	2.128(6)-2.147(6)		80.8(3)-82.2(3)		162.6(3)-163.0(2)	2.918(9)	[128]
$C_6F_5I(O_2CC_6F_5)_2$	2.072(4)	2.107(2)-2.140(2)	-	83.27(12)-84.93(12)	-	168.19(12)	3.127(3) ^h	[129]
$C_6F_5IF_4$	2.081(7)-2.088(5)	1.904(3)-1.929(4)	-	83.1(2)-84.7(1)	-	88.5(2)-90.4(2)	3.220(4)	[80]
C ₆ F ₅ IOF ₂	2.095(8)-2.111(8)	1.901(8)-1.990(7) ⁱ	1.762(6) - 1.770(7) ^j			$167.4(2)^k 89.0(3)-92.1(3)^l$	2,855	[107]

^a For comparison: C–I in C₆F₅I [80] 2.077(4) Å.

^b I–O.

^c I–Cl.

^d I-C₆F₅.

^e I–F.

^f I–CN.

^g I-F.

^h I–O (intramolecular).

ⁱ I-F.

 j I = O.

^k ∠(F–I–F).

 $^{1} \angle (F-I = O).$

Table 3

$[(C_6F_5)_2IF_n]^* (n = 0, 2)$	D(Hal-C) (Å)	D(Hal-F) (Å)	∠(C-Hal-C) (°)	∠(C-Hal-F)(°)	∠(F-Hal-F) (°)	Shortest contact cation- anion (Å)	Reference
$\begin{array}{l} [(C_{6}F_{5})_{2}I][BF_{4}] \\ [(C_{6}F_{5})_{2}IF_{2}][BF_{4}]\cdot CH_{2}Cl_{2} \\ C_{6}F_{5}I(CN)F \\ [(C_{6}F_{5})_{2}Br][BF_{4}] \end{array}$	$\begin{array}{c} 2.04(1)^a {-} 2.08(1) \\ 2.047(5) {-} 2.081(4)^a \\ 2.077(3)^{a,c} {-} 2.112(4)^d \\ 1.894(8) {-} 1.908(8)^f \end{array}$	- 1.902(3)-1.923(3) 2.110(2) -	94.9(5) 102.71(19) 86.27(14) 97.8(3)	_ 84.37(16)-86.83(16) 80.95(11) _	_ 166.54(13) _ _	2.766(16) ^b 2.601(4) 2.644(2) ^e 2.791(8)	[65] [26] [100] [86]

Characteristic structural features of the iodonium cations $[(C_6F_5)_2I]^+$ and $[(C_6F_5)_2I_2]^+$ and of the formaly related molecule $C_6F_5[(CN)F$ and of the bromonium cation $[(C_{e}F_{5})_{2}Br]^{+}$

^d I–CN.

^e I-F.

^f Hal = Br.

have slightly longer C-I distances than CF₃IF₂. The C-I-X angles cover a range from 76.3 to 89.2° and their averaged values from 81.4 to 85.8°. The latter is associated with greater chlorine, whereas in case of fluorine and oxygen ligands the angle is close to 82°. When going from CF₃IF₂ to CF₃IF₄ the C–I–F angle does not change within 3σ , but the C–I distance becomes longer. This elongation may be attributed to the weakening of the C-I bond caused by the increase of partial positive charge on I(V) in combination with the partial positive charge on carbon.

In case of $C_6F_5I(III and V)$ compounds the influence of the oxidation state of iodine, of the nature of the compound (neutral molecule or cation in a salt) on the structural parameters can be shown. Thus, the averaged C-I distance increases from C₆F₅IF₂ (2.068(3) Å) via C_6F_5I (2.077(4) Å) to $C_6F_5IF_4$ (2.085(7) Å) and is independent from the oxidation state of iodine for $[(C_6F_5)_2I]^+$ (2.06(1) Å) and $[(C_6F_5)_2IF_2]^+$ (2.064(5) Å) (both as $[BF_4]^-$ salts) (Table 3). The averaged I-F distance becomes shorter from $C_6F_5IF_2$ (1.991(3) Å) to C₆F₅IF₄ (1.917(4) Å) and neglectable shorter when going to the I(V) cation $[(C_6F_5)_2IF_2]^+$ (1.913 (3) Å). In $[(C_6F_5)_2IF_2]^+$ the C–I–C angle is greater by 7.8° in comparison with $[(C_6F_5)_2I]^+$. The F–I–F angle in $[(C_6F_5)_2IF_2][BF_4]$ is 4.5° smaller than that in neutral C₆F₅IF₂.

A characteristic feature of all above mentioned perfluoroorganoiodine(III and V) compounds are intermolecular contacts which are caused by the significant partial positive charge on iodine. These contacts with nucleophilic sites are strong in R_FIF_n molecules (n = 2, 4) and in iodonium salts. So far the shortest I- -F contact of 2.601(4) Å was observed in $[(C_6F_5)_2IF_2][BF_4] \cdot CH_2Cl_2$ (sum of van der Waals radii I–F = 3.45 Å [136]). Some authors e.g. Ochiai [137] describe iodonium(III) salts, [RR'I]Y, as λ^3 -iodanes even with I- -Y contacts of approximately 3.0 ± 0.2 Å and explain their view by the T-shape environment of iodine. From their physical and chemical properties iodonium salts are no molecules. Their electrophilic cations have an octet and their contacts to anions correlate with the electrophilicity of the cation and the nucleophilicity of the anion. Thus, in perfluoroorganoiodonium salts these electrostatic contacts are most distinct. An interesting compound relating to the present topic is $C_6F_5I(CN)F$ [100], which can be described by three Lewis formula: $[C_6F_5(CN)I]F$ (a), $[C_6F_5(F)I][CN]$ (b), and $C_6F_5I(CN)F$ (c). Formula a and b express the iodonium character and c the T-shape molecule, where CN acts as a pseudo-halogen. Here the structural parameters support formula c (Table 2).

7. Summary

This review has shown relations between perfluoroorganoiodine and -bromine compounds and their parent molecules HalF_x (x = 3 and 5). R_FHalF₂ and R_FHalF₄ are intensively investigated derivatives which are preferentially used for transformations in the Hal-F moiety. Neutral R_F HalF₂ and R_F HalF₄ molecules (Hal = I, Br) can principally be obtained on nucleophilic routes from the halogen fluorides and suitable R_F-transfer reagents. The majority of R_FIF₂ and R_FIF₄ were prepared by oxidative addition of fluorine. The oxidative addition can be extended to ROOR and restricted to Cl₂. ClX reagents (X = F, OR_F, ONO₂, OS(O₂)F, OCl, OClO₃, and OTeF₅) allow the synthesis of a wide variety of R_FIX₂ compounds. R_FIF₂ and $R_F I(OC(O)R'_F)_2$ are suitable starting materials to introduce preferentially carbon and oxygen nucleophiles into the iodine(III) moiety. Applications mainly use the fluorination property of R_FIF₂ or the oxidation property of R_FIX₂. Iodonium and bromonium(III) salts $[R_F(R)Hal]Y$ were prepared under acidic conditions. Their electrophilic cations allow the formal transfer of R_F cations to nucleophiles. In case of $[(R_F)_2 I F_2]Y$ the excellent fluorination potential is worth to mention.

Besides the reported material the review reveals "white spots" of fundamental research like the preparation of perfluoroorganoiodine(VII) or -chlorine(III and V) compounds. Furthermore, it shows that in contrast to polyvalent non-fluorinated iodine compounds the perfluorinated analogues are less wide-spread investigated (a) as reagents in fluoroorganic chemistry and (b) with application purposes.

Acknowledgements

We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft, the Russian Foundation for Basic Research, and the Fonds der Chemischen Industrie.

References

- [1] (a) A.E. Reed, P.v.R. Schleyer, J. Am. Chem. Soc. 112 (1990) 1434-1445; (b) W. Kutzelnigg, Angew. Chem. Intern. Ed. Engl. 23 (1984) 272-295;
- (c) J.L. Musher, Angew. Chem. 81 (1969) 68-83. [2] Selected reviews:
 - (a) E.D. Matveeva, M.V. Proskurnina, N.S. Zefirov, Heteroatom Chem. 17 (2006) 595-617;
 - (b) P.J. Stang, J. Org. Chem. 68 (2003) 2997-3008;
 - (c) V.V. Zhdankin, P.J. Stang, Chem. Rev. 102 (2002) 2523-2584;
 - (d) N.S. Pirkuliev, V.K. Brel, N.S. Zefirov, Usp. Khim. 69 (2000) 118-133, Russ. Chem. Rev. 69 (2000) 105-120;
 - (e) T. Umemoto, Chem. Rev. 96 (1996) 1757-1778;
 - (f) P.J. Stang, V.V. Zhdankin, Chem. Rev. 96 (1996) 1123-1178;
 - (g) I.I. Maletina, V.V. Orda, L.M. Yagupol'skii, Usp. Khim. 58 (1989) 925-950, Russ. Chem. Rev. 58 (1989) 544-558;
 - (h) E.B. Merkushev, Usp. Khim. 56 (1987) 1444-1479, Russ. Chem. Rev. 56 (1987) 826-845;

^a Hal = I. ^b I–FBF₃.

c I-C₆F₅.

⁽i) I.I. Maletina, A.A. Mironova, V.V. Orda, L.M. Yagupol'skii, Rev. Heteroatom Chem. 8 (1993) 232-255;

⁽j) V.V. Zhdankin, Hypervalent Iodoarenes and Arene Iodonium Salts in Science of Synthesis, Houben-Weyl Methods of Molecular Transformations, vol. 31a, 2007. Chapter 31.4.1:

(k) T. Wirth, Topics in Current Chemistry: Hypervalent Iodine Chemistry, vol. 224, Springer, Berlin, 2003, p. 1;

(1) K.-Y. Akiba, Chemistry of Hypervalent Compounds, Wiley-VCH, New York, 1999:

(m) A. Varvoglis, Hypervalent Iodine in Organic Synthesis, Academic Press, London, 1997

- (n) A. Varvoglis, The Organic Chemistry of Polycoordinated Iodine, VCH, Weinheim, 1992.
- [3] M. Schmeißer, E. Scharf, Angew. Chem. 71 (1959) 524.

472

- [4] D. Naumann, M. Schmeißer, L. Deneken, J. Inorg. Nucl. Chem. Suppl. (1976) 13-15.
- [5] F. Bailly, Perfluororganoiod(III)-Verbindungen, Dissertation, University Duisburg, 2001, ISBN 3-89833-039-7.
- [6] C.S. Rondesvedt, J. Am. Chem. Soc. 91 (1969) 3054-3061.
- [7] D. Naumann, L. Deneken, J. Fluorine Chem. 5 (1975) 443-447.
- [8] H.-J. Frohn, R. Nielinger, J. Fluorine Chem. 77 (1996) 143-146.
- [9] M. Schmeißer, K. Dahmen, P. Sartori, Chem. Ber. 103 (1970) 307-311.
- [10] F. Bailly, P. Barthen, W. Breuer, H.-J. Frohn, M. Giesen, J. Helber, G. Henkel, A. Priwitzer, Z. Anorg. Allg. Chem. 626 (2000) 1406-1413.
- [11] V. Padelidakis, W. Tyrra, D. Naumann, J. Fluorine Chem. 99 (1999) 9-15.
- [12] V.V. Lyalin, V.V. Orda, L.A. Alekseeva, L.M. Yagupol'skii, Zh. Org. Khim. 6 (1970) 329–332, J. Org. Chem. USSR 6 (1970) 317–319.
- [13] D. Naumann, private communication.
- [14] H.-J. Frohn, J. Helber, J. Fluorine Chem. 16 (1980) 568.
- [15] P. Bravo, V. Montanari, G. Resnati, D.D. DesMarteau, J. Org. Chem. 59 (1994) 6093-6094.
- [16] A.V. Fokin, Yu.N. Studnev, A.I. Rapkin, T.M. Potarina, L.D. Kuznetsova, Izv. Akad. Nauk SSSR, Ser. Khim. 11 (1980) 2641-2643.
- [17] I.I. Maletina, V.V. Orda, N.N. Aleinikov, B.L. Korsunskii, L.M. Yagupol'skii, Zh. Org. Khim. 12 (1976) 1371-1372, J. Org. Chem. USSR 12 (1976) 1364.
- [18] H.-J. Frohn, V.V. Bardin, Z. Anorg. Allg. Chem. 634 (2008) 82-86.
- [19] K. Alam, A.F. Janzen, J. Fluorine Chem. 36 (1987) 179-184.
- [20] H.-I. Frohn, V.V. Bardin, Z. Naturforsch, 51b (1996) 1015-1021.
- [21] A. Abo-Amer, H.-J. Frohn, C. Steinberg, U. Westphal, J. Fluorine Chem. 127 (2006) 1311-1323
- [22] H.-J. Frohn, N. LeBlond, K. Lutar, B. Zemva, Angew. Chem. Int. Ed. Engl. 39 (2000) 391-393.
- [23] C.S. Rondesvedt, US 3,377,390 (1968).
- [24] C.S. Rondestvedt, FR 1521775 (1968).
- [25] A. Wenda, H.-J. Frohn, U. Flörke, 15th European Symposium on Fluorine Chem-
- [27] R. Minkwitz, M. Berkei, Inorg. Chem. 37 (1998) 5247-5250.
- [28] R. Minkwitz, R. Bröchler, M. Schütze, Z. Anorg. Allg. Chem. 621 (1995) 1727-1730
- [29] J.A.M. Canich, M.E. Lerchen, G.L. Gard, J.M. Shreeve, Inorg. Chem. 25 (1986) 3030-3033
- [30] D. Naumann, H.H. Heinsen, E. Lehmann, J. Fluorine Chem. 8 (1976) 243-253.
- [31] M. Schmeißer, E. Lehmann, D. Naumann, Chem. Ber. 110 (1977) 2665-2668.
- [32] C.J. Schack, K.O. Christe, J. Fluorine Chem. 16 (1980) 63-73.
- [33] C.J. Schack, D. Pilipovich, K.O. Christe, Inorg. Chem. 14 (1975) 145-151.
- [34] C.J. Schack, K.O. Christe, J. Fluorine Chem. 47 (1990) 79-87.
- [35] D. Naumann, L. Deneken, E. Renk, J. Fluorine Chem. 5 (1975) 509-519.
- [36] M. Schmeißer, K. Dahmen, P. Sartori, Chem. Ber. 100 (1967) 1633-1637.
- [37] V.V. Lyalin, V.V. Orda, L.A. Alekseeva, L.M. Yagupol'skii, Zh. Org. Khim. 8 (1972) 1019-1023, J. Org. Chem. USSR 8 (1972) 1027-1031.
- [38] A.A. Mironova, I.I. Maletina, V.V. Orda, L.M. Yagupol'skii, Zh. Org. Khim. 19 (1983) 1213-1217, J. Org. Chem. USSR (1983) 1082-1085.
- [39] J.P. Collman, Chem. Eng. News 63 (1985) 2.
- [40] J. Helber, H.-J. Frohn, A. Klose, T. Scholten, Arkivoc Online Vers.: http://www.arkat-usa.org/ark/journal/2003/Varvoglis/AV-682A/682.htm.
- [41] K. Dahmen, Dissertation, RWTH Aachen, 1967.
- [42] (a) M. Schmeißer, E. Scharf, Angew. Chem. 72 (1960) 324;
- (b) M. Schmeißer, P. Sartori, D. Naumann, Chem. Ber. 103 (1970) 590-593.
- [43] H.-J. Frohn, K. Schrinner, Z. Anorg. Allg. Chem. 623 (1997) 1847-1849.
- [44] W. Tyrra, D. Naumann, Can. J. Chem. 69 (1991) 327-333.
- [45] D. Naumann, R. Feist, J. Fluorine Chem. 15 (1980) 541-542.
- [46] H.-J. Frohn, P. Barthen, F. Bailly, K. Koppe, in: Proceedings of the First International Conference on Hypervalent Iodine, Thessaloniki, GR, (2001), pp. 109-111.
- [47] L.M. Yagupol'skii, A.A. Mironova, I.I. Maletina, V.V. Orda, Zh. Org. Khim. 16 (1980) 232-233
- [48] I.I. Maletina, V.V. Orda, Y.L. Yagupol'skii, J. Fluorine Chem. 70 (1995) 85-88.
- [49] V.V. Bardin, G.G. Furin, G.G. Yakobson, Zh. Obshch. Khim. 16 (1980) 1498-1501, J. Gen. Chem. USSR 16 (1980) 1288-1291.
- [50] R. Minkwitz, V. Gerhard, Z. Naturforsch. 46b (1991) 884-886
- [51] G.A. Olah, Y.K. Mo, E.G. Melby, H.C. Lin, J. Org. Chem. 38 (1973) 367-372.
- [52] H.-J. Frohn, V.V. Bardin, in: Proceedings of the 18th International Symposium on
- Fluorine Chemistry, Bremen (Germany), (2006), p. 92, Abstract.
- [53] D. Naumann, W. Tyrra, J. Chem. Soc. Chem. Commun. (1989) 47-50.
- [54] H. Butler, D. Naumann, W. Tyrra, Eur. J. Solid State Inorg. Chem. 29 (1992) 739-758.
- [55] V.V. Lyalin, V.V. Orda, L.A. Alekseeva, L.M. Yagupol'skii, Zh. Org. Khim. 7 (1971) 1473-1478, J. Org. Chem. USSR 7 (1971) 1524-1527.
- [56] T. Umemoto, Y. Kuriu, H. Shuyama, O. Miyano, S.-I. Nakayama, J. Fluorine Chem. 31 (1986) 37-56.

- [57] T. Umemoto, Y. Gotoh, J. Fluorine Chem. 28 (1985) 235-239.
- [58] W. Tyrra, H. Butler, D. Naumann, J. Fluorine Chem. 60 (1993) 79-83.
- [59] V.V. Zhdankin, C.J. Kuehl, J.T. Bolz, N.S. Zefirov, Mendeleev Commun. (1994) 165-166
- [60] C.J. Kuehl, J.T. Bolz, V.V. Zhdankin, Synthesis (1995) 312-316.
- [61] V.V. Zhdankin, C.J. Kuehl, A.J. Simonsen, J. Org. Chem. 61 (1996) 8272-8276.
- [62] H.-J. Frohn, A. Klose, V.V. Bardin, J. Fluorine Chem. 64 (1993) 201-215.
- [63] V.V. Bardin, H.-J. Frohn, Main Group Metal Chem. 25 (2002) 589-613.
- [64] V.V. Bardin, N.Yu. Adonin, H.-J. Frohn, J. Fluorine Chem. 128 (2007) 699-702. [65] F. Bailly, P. Barthen, H.-J. Frohn, M. Köckerling, Z. Anorg. Allg. Chem. 626 (2000)
- 2419-2427.
- [66] A. Abo-Amer, N.Y. Adonin, V.V. Bardin, P. Fritzen, H.-J. Frohn, C. Steinberg, J. Fluorine Chem. 125 (2004) 1771-1778.
- [67] H.-J. Frohn, V.V. Bardin, M. Becher, V. Bilir, U. Flörke, 15th European Symposium on Fluorine Chemistry, Prague (Czech Republic), 2007, p. 95, Abstract.
- [68] T. Lewe, W. Tyrra, D. Naumann, J. Fluorine Chem. 99 (1999) 123-125.
- [69] H.-J. Frohn, M. Giesen, A. Klose, A. Lewin, V.V. Bardin, J. Organomet. Chem. 506
- (1996) 155-164.
- [70] W. Tyrra, D. Naumann, J. Fluorine Chem. 45 (1989) 401-416.
- [71] G. Oates, J.M. Winfield, J. Chem. Soc. Dalton Trans. (1974) 119-124.
- [72] O.R. Chambers, G. Oates, J.M. Winfield, J. Chem. Soc. Commun. (1972) 839-840.
- [73] G. Oates, J.M. Winfield, J. Fluorine Chem. 4 (1974) 235–237.
- [74] J.A. Berry, G. Oates, J.M. Winfield, J. Chem. Soc. Dalton Trans. (1974) 509-511.
- [75] C. Steinberg, Dissertation, University Duisburg-Essen, 2008.
- [76] R. Minkwitz, R. Bröchler, H. Preut, Z. Anorg. Allg. Chem. 621 (1995) 1247–1250.
- [77] H.-J. Frohn, V.V. Bardin, J. Fluorine Chem. 126 (2005) 1036-1043.
- [78] H.-J. Frohn, Chem.-Ztg. 108 (1984) 146–147.
- [79] H.-J. Frohn, V.V. Bardin, J. Organomet. Chem. 501 (1995) 155-159. [80] H.-J. Frohn, S. Görg, G. Henkel, M. Läge, Z. Anorg. Allg. Chem. 621 (1995) 1251-1256.
- [81] T. Lewe, D. Naumann, G. Nowicki, H. Schneider, W. Tyrra, Z. Anorg. Allg. Chem. 623 (1997) 122-128.
- [82] W. Tyrra, D. Naumann, Can. J. Chem. 67 (1989) 1949-1951.
- [83] V.V. Bardin, G.G. Furin, G.G. Yakobson, Zh. Org. Khim. 16 (1980) 1256–1263, J. Org. Chem. USSR 16 (1980) 1086-1092.
- [84] J.A. Obaleye, L.C. Sams, J. Inorg. Nucl. Chem. 43 (1981) 2259-2260.
- [85] H.-J. Frohn, M. Giesen, J. Fluorine Chem. 24 (1984) 9-15.
- [86] H.-J. Frohn, M. Giesen, D. Welting, Eur. J. Solid State Inorg. Chem. 33 (1996) 841-853.
- [87] A.N. Nesmevanov, A.N. Vanchikov, I.N. Lisichkina, V.V. Grushin, T.P. Tolstava, Dokl. Akad. Nauk SSSR 255 (1980) 1386–1389, Proc. Acad. Sci. USSR (1980) 606– 609
- [88] A.N. Nesmevanov, A.N. Vanchikov, I.N. Lisichkina, V.V. Lazarev, T.P. Tolstava Dokl. Akad. Nauk SSSR 255 (1980) 1136-1140, Proc. Acad. Sci. USSR (1980) 594-598
- [89] V.V. Bardin, H.-J. Frohn, in: Proceedings of the 18th International Symposium on Fluorine Chemistry, Bremen (Germany), (2006), p. 301, Abstract.
- J.A. Obaleye, L.C. Sams, J. Inorg. Nucl. Chem. Lett. 16 (1980) 343-347. [00]
- [91] M.H. Habibi, L.C. Sams, J. Fluorine Chem. 18 (1981) 277–280.
 [92] M.H. Habibi, L.C. Sams, J. Fluorine Chem. 21 (1982) 287–293.

[97] J.A. Obaleye, L.C. Sams, J. Fluorine Chem. 18 (1981) 31-35.

[102] R. Minkwitz, M. Berkei, Inorg. Chem. 38 (1999) 5041-5044.

109] H. Volz, W. Müller, Liebigs Ann. Chem. (1992) 1097-1101.

[114] H.-J. Frohn, V.V. Bardin, J. Fluorine Chem. 127 (2006) 18-21.

665-666, J. Org. Chem. USSR 25 (1989) 597-598.

[104] M. Giesen, Dissertation, University Duisburg, 1986.

[107] S. Görg, Dissertation, University Duisburg, 1994.

[103] D. Naumann, J. Baumanns, J. Fluorine Chem. 8 (1976) 177-182.

[106] V.V. Zhdankin, C.J. Kuehl, Tetrahedron Lett. 35 (1994) 1809-1812.

[110] D. Naumann, W. Habel, Z. Anorg. Allg. Chem. 482 (1981) 139-142.

Abstract.

USSR (1970).

549-553.

1974) 323-327.

[98] J.A. Obaleye, L.C. Sams, J. Fluorine Chem. 24 (1984) 413-418

- [93] H.-J. Frohn, W. Breuer, J. Fluorine Chem. 34 (1987) 443–451.
 [94] W. Breuer, H.-J. Frohn, J. Fluorine Chem. 47 (1990) 301–315.
- [95] W. Breuer, H.-J. Frohn, Z. Anorg, Allg. Chem. 619 (1993) 209–214.
 [96] W. Breuer, H.-J. Frohn, Z. Anorg. Allg. Chem. 611 (1992) 85–91.

[99] R. Minkwitz, M. Berkei, R. Ludwig, Eur. J. Inorg. Chem. (2000) 2387-2392. [100] (a) H.-J. Frohn, M. Hirschberg, in: Proceedings of the Second International

Conference on Hypervalent Iodine, Thessaloniki, GR, (2006), pp. 1-3;

[101] H.-J. Frohn, U. Flörke, M. Hirschberg, in: Proceedings of the 15th European

[105] V.V. Zhdankin, C.J. Kuehl, A.J. Simonsen, Main Group Chem. 1 (1996) 349-352.

[111] V.V. Lyalin, V.V. Orda, L.A. Alekseeva, L.M. Yagupol'skii, SU 283203 19701006,

[112] J. Baumanns, L. Deneken, D. Naumann, M. Schmeißer, J. Fluorine Chem. 3 (1973/

[113] A. Wenda, H.-J. Frohn, in: Proceedings of the 18th International Symposium on

[115] A.A. Mironova, I.I. Maletina, V.V. Orda, L.M. Yagupol'skii, Zh. Org. Khim. 26 (1990)

[116] A.A. Mironova, V.V. Orda, I.I. Maletina, L.M. Yagupol'skii, Zh. Org. Khim. 25 (1989)

[117] J. Zhang, G.R. Martin, D.D. DesMarteau, Chem. Commun. (2003) 2334-2335.

Fluorine Chemistry, Bremen (Germany), (2006), p. 237, Abstract.

[108] Z.-Q. Tian, J.L. Richards, T.G. Traylor, J. Am. Chem. Soc. 117 (1995) 21–29.

(b) M. Hirschberg, H.-J. Frohn, in: Proceedings of the 18th International Sym-

Symposium on Fluorine Chemistry, Prague (Czech Republic), 2007, p. 310,

posium on Fluorine Chemistry, Bremen (Germany), (2006), p. 238, Abstract.

- [118] S.A. Klyuchinskii, S.B. Grishnyakov, L.V. Demchenko, V.S. Zavgorodnii, Zh. Obshch. Khim. 63 (1993) 2394-2395, Russ. J. Gen. Chem. 63 (1993) 1661-1662.
- [119] T. Umemoto, Y. Gotoh, Bull. Chem. Soc. Jpn. 59 (1986) 439-445.
- [120] D.D. DesMarteau, V. Montanari, Chem. Commun. (1998) 2241-2242.
- [121] P. Eisenberger, S. Gischig, A. Togni, Chem. Eur. J. 12 (2006) 2579-2586.
- [122] I. Kieltsch, P. Eisenberger, A. Togni, Angew. Chem. Int. Ed. 46 (2007) 754-757.
- [123] S.A. Lermontov, T.N. Velikohat'ko, N.S. Zefirov, Izv. Akad. Nauk Ser. Khim. 45 (1996) 1022-1023, Russ. Chem. Bull. 45 (1996) 977-978.
- [124] V. Tesevic, J.A. Gladysz, Green Chem. 7 (2005) 833-836.
- [125] V. Montanari, K. Kumar, J. Am. Chem. Soc. 126 (2004) 9528-9529.
- [126] V. Montanari, K. Kumar, J. Fluorine Chem. 127 (2006) 565-570.
- [127] V. Montanari, K. Kumar, Eur. J. Org. Chem. (2006) 894–877.
 [128] H.-O. Kalinowski, S. Berger, S. Braun, ¹³C-NMR-Spektroskopie. Thieme, 1984, Stuttgart/NY.

- [129] W. Tyrra, M. Miczka, D. Naumann, Z. Anorg. Allg. Chem. 623 (1997) 1857-1859.
- [130] As a convention, shielding (deshielding) of atoms in the NMR spectra of polyvalent halogen compound is related to the corresponding monovalent halogen compound. For instance, $\Delta\delta(C^1) = \delta(C^1)(CF_3IF_m) - \delta(C^1)(CF_3I)$.
- [131] V. Montanari, D.D. DesMarteau, W.T. Pennington, J. Mol. Struct. 550/551 (2000) 337-348.
- [132] R. Minkwitz, M. Berkei, Z. Naturforsch. 55b (2000) 718-722.
- [133] R. Minkwitz, T. Hertel, H. Preut, Z. Anorg. Allg. Chem. 621 (1995) 1552-1557.
- [134] M. Bardan, T. Birchall, C.S. Frampton, P. Kapoor, Can. J. Chem. 67 (1989) 1878-1885.
- [135] H.-J. Frohn, J. Helber, A. Richter, Chem. Ztg. 107 (1983) 169-172.
- [136] A. Bondi, J. Phys. Chem. 68 (1964) 441-451.
- [137] M. Ochiai, in: K.-Y. Akiba (Ed.), Organic Synthesis Using Hypervalent Organoiodanes in Chemistry of Hypervalent Compounds, Wiley-VCH, New York, 1999, pp. 359-387.